Algorithms for Radio Networks

Ideal Cells: Voronoi-Diagrams

University of Freiburg
Technical Faculty
Computer Networks and Telematics Prof. Christian Schindelhauer

Voronoi Diagrams Definition (I)

- Best station problem
- leads to Voronoi diagrams
- Distance measure:
- Euclidean norm
- = L_{2}-Norm
- $\mathrm{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right), \mathrm{q}=\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right) \in \mathbf{R}^{2}$
$|p, q|:=\|p, q\|_{2}:=\sqrt{\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2}}$.
- Biscector B(p,q)

$$
B(p, q):=\left\{x \in \mathbb{R}^{2}| | p, x|=|q, x|\} .\right.
$$

Voronoi Diagrams Definition (II)

- Bisector

$$
B(p, q):=\left\{x \in \mathbb{R}^{2}| | p, x|=|q, x|\}\right.
$$

- Partitions the plane in half-planes $\mathbf{D}(\mathrm{p}, \mathrm{q})$ and $\mathrm{D}(\mathrm{q}, \mathrm{p})$

$$
\begin{aligned}
& D(p, q):=\left\{x \in \mathbb{R}^{2}| | p, x|<|q, x|\}\right. \\
& D(q, p)=\left\{x \in \mathbb{R}^{2}| | p, x|>|q, x|\}\right.
\end{aligned}
$$

- For a given point set \mathbf{V} defined Voronoi region $\operatorname{VR}(\mathrm{p}, \mathrm{V})$ of a point $\mathrm{v} \in \mathrm{V}$:

$$
\mathbf{V R}(p, V)=\bigcap_{q \in V \backslash\{p\}} D(p, q)
$$

Voronoi Diagrams Definition (III)

- Voronoi region VR(p,V)

$$
V R(p, V)=\bigcap_{q \in S \backslash\{p\}} D(p, q)
$$

- Voronoi diagram VD(V)

$$
V D(V):=\mathbb{R}^{2} \backslash \bigcup_{p \in V} V \boldsymbol{R}(p, V)
$$

- All Voronoi regions are convex
- Proof: Exercise
- Voronoi diagrams consist of lines, rays and dots

Cellular Networks Voronoi Diagrams

- Bisector $B(p, q):=\left\{x \in \mathbb{R}^{2}| | p, x|=|q, x|\}\right.$.
- Half-plane $D(p, q):=\left\{x \in \mathbb{R}^{2}| | p, x|<|q, x|\}\right.$
- Voronoi region $\operatorname{VR}(\mathbf{p}, \mathbf{V}), \mathbf{p} \in \mathbf{V} \subseteq \mathbf{I R}^{2}$:

$$
\boldsymbol{V R}(p, V)=\bigcap_{q \in V \backslash\{p\}} D(p, q)
$$

- Voronoi diagram $\mathbf{V D}(\mathbf{V}), \mathbf{V} \subseteq \mathbf{R R}^{\mathbf{2}}$:

$$
\operatorname{VD}(V):=\mathbb{R}^{2} \backslash \bigcup_{p \in V} \operatorname{VR}(p, V)
$$

Voronoi-Diagrams Structure

- Voronoi diagrams consist of lines, rays and dots
- Consider neighboring Voronoi regions VR (p, V) and VR (q, V)
- Then every point of the common border in the bisector B (p, q) are, because
$\overline{\boldsymbol{V R}(p, V)} \cap \overline{\boldsymbol{V R}(q, V)} \subseteq \overline{D(p, q)} \cap \overline{D(q, p)}=B(p, q)$
- Every Voronoi region is convex and +
- Edge pieces consist of a finite number of straight line segments
\Rightarrow a Voronoi-Diagram is a geometric graph

Geometric Graph

- Geometric realization of an undirected graph in $\mathbf{R}^{\mathbf{2}}$
- Nodes are mapped to points
- Edges are mapped to simple paths
- No intersections between two simple paths
- planar graph
- connected component
- Maximal subgraph by each node has a path to every other node

Circle Lemma

- Lemma
- Let x be a point in the plane and let $C(x)$ be an circle expanding with center x. Then for the Voronoi diagram of a point set V :

1. $C(x)$ first meets only on a point $p \in V$ exactly when x lies in the Voronoi region of p.
2. $C(x)$ first meets only two points $p, q \in V$ exactly when x lies on a Voronoi edge between the regions of p and q
3. $C(x)$ first meets exactly at the points $p_{1}, .$. , p_{k}, with $k \geq 3$ if and only if x is a Voronoi node at which the adjacent region of $p, .$. , p_{k}.

Computer Networks and Telematics
University of Freiburg
Computer Networks and Telematics
University of Freiburg

Convex Hull

- Voronoi diagrams are closely related to the convex hull CH (V) of a point set V

$$
C H(V):=\bigcap_{K \supseteq V: K_{\text {konvex }}} K
$$

- Lemma

- A point $\mathrm{p} \in \mathrm{V}$ has exactly one unbounded Voronoi region, then, if he is on the edge of the convex hull of V.

Dual Graphs

- The dual graph G* of a geometric graph G (on a spherical surface) is obtained by proceeding as follows
- Inside each face F of G, one chooses a point p^{*}. These points are the nodes of G^{*}.
- For each edge e of G with an adjacent area F and F^{\prime} connect $p^{*} F$ with $p^{*}{ }_{F}$ by an edge e^{*} which intersects only with e and no other edge.

Delaunay Triangulation

- Definition
- For points in general position a Delaunay triangulation consists of triangles that satisfy the radius condition:
- The perimeter of each triangle does not contain other nodes
- General position:
- No three points are on a straight line
- No four points on an arc
- This can be obtained by moving each point to an infinitesimally small vector in random
 direction

Delaunay from VoronoiDiagram

- Alternative representation of the Delaunay triangulation
- Given set V and Voronoi-Diagram VD(V)
- If for $p, q \in V$ the regions $V R(p, V)$ and $V R(q, V)$ share an edge then add (p, q) to the set of edges of the Delaunay triangulation

Delaunay from VoronoiDiagram

- Lemma
- The Dealunay triangulation is a geometric realization of the dual graph of the Voronoi diagram.
- Since V in general position, i.e., No four points on an arc
- No Voronoi point has more than three edges (because of circle lemma)
- Thus each face of the dual graph only three adjacent edges
- \Rightarrow Delaunay triangulation consists only of triangles
- Circle lemma implies Delaunay perimeter property

Algorithms for Radio Networks

Ideal Cells: Voronoi-Diagrams

University of Freiburg
Technical Faculty
Computer Networks and Telematics Prof. Christian Schindelhauer

