

Algorithms for Radio Networks

Ideal Cells: Voronoi-Diagrams

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

Dienstag, 8. November 11

Voronoi Diagrams Definition (I)

Best station problem

- leads to Voronoi diagrams
- Distance measure:
 - Euclidean norm
 - = L_2 -Norm
 - $p=(p_1,p_2), q=(q_1,q_2) \in \mathbf{R}^2$

$$|p,q| := ||p,q||_2 := \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}$$

Biscector B(p,q)

$$B(p,q) := \{ x \in \mathbb{R}^2 \mid |p,x| = |q,x| \} .$$

Algorithms for Radio Networks Prof. Christian Schindelhauer

Voronoi Diagrams Definition (II)

Bisector

$$B(p,q) := \{ x \in \mathbb{R}^2 \mid |p,x| = |q,x| \} .$$

Partitions the plane in half-planes D(p,q) and D(q,p)

$$D(p,q) := \{ x \in \mathbb{R}^2 \mid |p,x| < |q,x| \}$$
$$D(q,p) = \{ x \in \mathbb{R}^2 \mid |p,x| > |q,x| \}$$

For a given point set V defined Voronoi region
VR(p, V) of a point v ∈ V:

$$V\!R(p,V) = \bigcap_{q \in V \setminus \{p\}} D(p,q)$$

Voronoi Diagrams Definition (III)

Voronoi region VR(p,V)

$$VR(p,V) = \bigcap_{q \in S \setminus \{p\}} D(p,q)$$

Voronoi diagram VD(V)

$$VD(V) := \mathbb{R}^2 \setminus \bigcup_{p \in V} VR(p, V)$$

- All Voronoi regions are convex
 - Proof: Exercise
- Voronoi diagrams consist of lines, rays and dots

Cellular Networks Voronoi Diagrams

• Bisector
$$B(p,q) := \{x \in \mathbb{R}^2 \mid |p,x| = |q,x|\}$$
.

- Half-plane $D(p,q) := \{x \in \mathbb{R}^2 \mid |p,x| < |q,x|\}$
- Voronoi region VR(p,V), $p \in V \subseteq IR^2$:

$$VR(p,V) = \bigcap_{q \in V \setminus \{p\}} D(p,q)$$

• Voronoi diagram VD(V), $V \subseteq IR^2$:

$$VD(V) := \mathbb{R}^2 \setminus \bigcup_{p \in V} VR(p, V)$$

Voronoi-Diagrams Structure

- Voronoi diagrams consist of lines, rays and dots
 - Consider neighboring Voronoi regions VR (p, V) and VR (q, V)
 - Then every point of the common border in the bisector B (p, q) are, because

$$\overline{\mathbf{VR}(p,V)} \cap \overline{\mathbf{VR}(q,V)} \subseteq \overline{D(p,q)} \cap \overline{D(q,p)} = B(p,q)$$

- Every Voronoi region is convex and +
- Edge pieces consist of a finite number of straight line segments
- ⇒ a Voronoi-Diagram is a geometric graph

Geometric Graph

- Geometric realization of an undirected graph in R²
- Nodes are mapped to points
- Edges are mapped to simple paths
- No intersections between two simple paths
 - planar graph
- connected component
 - Maximal subgraph by each node has a path to every other node

Circle Lemma

Lemma

- Let x be a point in the plane and let C(x) be an circle expanding with center x. Then for the Voronoi diagram of a point set V:
 - 1. C(x) first meets only on a point $p \in V$ exactly when x lies in the Voronoi region of p.
 - 2. C(x) first meets only two points $p, q \in V$ exactly when x lies on a Voronoi edge between the regions of p and q
 - 3. C(x) first meets exactly at the points p₁, ..., p_k, with k ≥ 3 if and only if x is a Voronoi node at which the adjacent region of p, ..., p_k.

Convex Hull

 Voronoi diagrams are closely related to the convex hull CH (V) of a point set V

$$C\!H\!(V):=\bigcap_{K\supseteq V:K\text{ konvex}}K$$

Lemma

 A point p ∈ V has exactly one unbounded Voronoi region, then, if he is on the edge of the convex hull of V.

Dual Graphs

- The dual graph G * of a geometric graph G (on a spherical surface) is obtained by proceeding as follows
 - Inside each face F of G, one chooses a point p*_F. These points are the nodes of G*.
 - For each edge e of G with an adjacent area F and F' connect p*_F with p*_F by an edge e* which intersects only with e and no other edge.

Delaunay Triangulation

Definition

- For points in general position a Delaunay triangulation consists of triangles that satisfy the radius condition:
 - The perimeter of each triangle does not contain other nodes
- General position:
 - No three points are on a straight line
 - No four points on an arc
 - This can be obtained by moving each point to an infinitesimally small vector in random direction

Delaunay from Voronoi-Diagram

- Alternative representation of the Delaunay triangulation
 - Given set V and Voronoi-Diagram VD(V)
 - If for p,q∈V the regions VR(p,V) and VR(q,V) share an edge then add (p,q) to the set of edges of the Delaunay triangulation

Delaunay from Voronoi-Diagram

Lemma

- The Dealunay triangulation is a geometric realization of the dual graph of the Voronoi diagram.
- Since V in general position, i.e., No four points on an arc
 - No Voronoi point has more than three edges (because of circle lemma)
 - Thus each face of the dual graph only three adjacent edges
 - \Rightarrow Delaunay triangulation consists only of triangles
- Circle lemma implies Delaunay perimeter property

Algorithms for Radio Networks

Ideal Cells: Voronoi-Diagrams

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

Dienstag, 8. November 11