

Algorithms for Radio Networks

Frequency Assignment

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

Freitag, 11. November 11

Cellular Networks

Original problem

- Rigid frequency multiplexing for a given set of base stations
- Given
 - positions of base stations
- Output
 - frequency assignment which minimizes the number of interferences
- How to model acceptable frequency assignments?

Frequency Assignment

• Given:

- set of points $V \subseteq \mathbb{IR}^2$ of *n* base stations B_1, \dots, B_n
- each base station covers an area
- Output:
 - function f:V→IN, which maps each base station to a frequency respecting frequency and distance conditions

Sample restraints

- minimize the number of given frequencies
- minimize the width of the frequency range
- minimize the number of interferences

Frequency Assignment: Models

- Interference graph G_{Int}:
 - nodes are base stations
 - edges describe possible interferences between base stations

Graph Coloring

node k-coloring

- Given undirected graph G=(V,E)
- A mapping $f: V \to F$ is a k-node coloring
 - if $f(u) \neq f(v)$ for $\{u,v\} \in E$ and |F|=k.
- chromatic number χ(G)
 - is the minimum k to color graph G
- clique number ω(G)
 - is the largest number of nodes which form a complete subgraph (clique) in G
- Relationship of ω(G), χ(G) and the degree of the graph
 Δ(G)
 - $\omega(G) \le \chi(G) \le \Delta(G) + 1$

Computational Complexity

- The degree can be easily seen from the graph description
- Clique number
 - Computation $\omega(G)$ is NP-hard
 - Can be computed in time $O(n^{\omega(G)})$
- Chromatic Number
 - k-Coloring of a graph is NP-complete (if k≥3)
 - computation of the chromatic number is NP-hard
 - Can be computed in Zeit $O(\chi(G)^n)$

Approximation Algorithms

- Let P(I) be the solution of an optimization problem for instance I
 - I=G [given undirected graph]
 - $P(I) = \chi(G)$ [chromatic number of G]
- Definition:
 - P can be absolutely approximated with additive term f(n), if there is a polynomial time bound bounde algorithm A such that for allinstances I of size n

 $| \mathsf{P}(\mathsf{I}) - \mathsf{A}(\mathsf{I}) | \leq \mathsf{f}(\mathsf{n})$

 P can be relatively approximated with factor g(n), if there is a polynomial time bound bounded algorithm A such that for all instances I of size n

$$\max\left\{\frac{P(I)}{A(I)}, \frac{A(I)}{P(I)}\right\} \le g(n)$$

Results for Graph Coloring

- Graph Coloring is NP-hard
 - cannot be approximated by a factor of n^ε für ε>0 unless NP≠P.
- "Can a given planar graph be colored with three colors"
 - is NP-complete
- But:
 - Every planar graph can be colored with four colors in polynomial time
 - Every graph can be colored (if possible) with two colors in polynomial time
 - There is an absolute approximation algorithm with quality O(n/log n) for the general coloring problem

Approximation Algorithm for Node Coloring

- Independent Set Problem (NP complete):
 - Let G=(V,E) be a graph and $U\subseteq V$.
 - *U* is **independent**, if: $\{u, v\} \notin E$ für alle $u, v \in U$
 - Independent set problem
 - compute a maximum set

Approximation Algorithm for Node Coloring

Algorithmus GreedylS:

U=∅, *G*=(*V*,*E*)

while V not empty do

Create graph with nodes V

Choose nodes *u* with minimal degree

Erase *u* and all neighbors of *u* in G from *V*

Insert *u* into *U*

od

Return U

- GreedyIS
 - computes a maximal (non extendable) independent set
 - run-time O(|V|+|E|)

Approximation Algorithm for Node Coloring

Algorithm GreedyCol:

- G=(V,E), Color =1;
- while V not empty do
 - Create *G* from *V* and determine *U* with GreedyIS(*G*)
 - Color all nodes in U with Color
 - Remove U from V and increment Color

od

Return node coloring

- GreedyCol computes in polynomial time a node coloring with O(n/log n) colors
 - There are better approximation algorithms

Models

Color model

- Neighbored cells have different frequencies
- Leads to node coloring of the interference graph

Advantage

- Simple model
- Disadvantage
 - No efficient algorithms are known for Coloring
 - Not an adequate model
 - relationship of received signal strength and influence of neighbored frequencies is not reflected by the model

Labeling versus Coloring

Coloring

- Use of reusable frequencies
- Minimize the total number of colors = frequencies available with minimum frequency distances
- Labelling
 - Each frequency is assigned only once
 - Frequency distances must be complied
 - Minimize used spectrum
- Set-(Coloring/Labeling)
 - A set of frequencies is assigned to a station instead of a single frequency
- Distance function d of the interference graph

Algorithms for Radio Networks

Frequency Assignment

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

Freitag, 11. November 11