Algorithms for Radio Networks

Frequency Assignment

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer
Cellular Networks

- **Original problem**
 - Rigid frequency multiplexing for a given set of base stations

- **Given**
 - positions of base stations

- **Output**
 - frequency assignment which minimizes the number of interferences

- **How to model acceptable frequency assignments?**
Frequency Assignment

- **Given:**
 - set of points $V \subseteq \mathbb{R}^2$ of n base stations B_1, \ldots, B_n
 - each base station covers an area

- **Output:**
 - function $f: V \rightarrow \mathbb{N}$, which maps each base station to a frequency respecting frequency and distance conditions

- **Sample restraints**
 - minimize the number of given frequencies
 - minimize the width of the frequency range
 - minimize the number of interferences
Frequency Assignment: Models

- Interference graph G_{Int}:
 - nodes are base stations
 - edges describe possible interferences between base stations
Graph Coloring

- **node k-coloring**
 - Given undirected graph $G=(V,E)$
 - A mapping $f:V \rightarrow F$ is a k-node coloring
 - if $f(u) \neq f(v)$ for $\{u,v\} \in E$ and $|F|=k$.

- **chromatic number $\chi(G)$**
 - is the minimum k to color graph G

- **clique number $\omega(G)$**
 - is the largest number of nodes which form a complete subgraph (clique) in G

- **Relationship of $\omega(G)$, $\chi(G)$ and the degree of the graph $\Delta(G)$**
 - $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$
Computational Complexity

- The degree can be easily seen from the graph description
- Clique number
 - Computation $\omega(G)$ is NP-hard
 - Can be computed in time $O(n^{\omega(G)})$
- Chromatic Number
 - k-Coloring of a graph is NP-complete (if $k \geq 3$)
 - Computation of the chromatic number is NP-hard
 - Can be computed in Zeit $O(\chi(G)^n)$
Approximation Algorithms

- Let $P(I)$ be the solution of an optimization problem for instance I
 - $I = G$ [given undirected graph]
 - $P(I) = \chi(G)$ [chromatic number of G]

- **Definition:**
 - P can be absolutely approximated with additive term $f(n)$, if there is a polynomial time bound bounde algorithm A such that for all instances I of size n
 $$| P(I) - A(I) | \leq f(n)$$
 - P can be relatively approximated with factor $g(n)$, if there is a polynomial time bound bounded algorithm A such that for all instances I of size n
 $$\max \left\{ \frac{P(I)}{A(I)}, \frac{A(I)}{P(I)} \right\} \leq g(n)$$
Results for Graph Coloring

- Graph Coloring is NP-hard
 - cannot be approximated by a factor of \(n^\varepsilon \) für \(\varepsilon > 0 \) unless \(\text{NP} \neq \text{P} \).

- „Can a given planar graph be colored with three colors“
 - is NP-complete

- But:
 - Every planar graph can be colored with four colors in polynomial time
 - Every graph can be colored (if possible) with two colors in polynomial time
 - There is an absolute approximation algorithm with quality \(O(n/\log n) \) for the general coloring problem
Approximation Algorithm for Node Coloring

- Independent Set Problem (NP complete):
 - Let $G=(V,E)$ be a graph and $U \subseteq V$.
 - U is independent, if: $\{u,v\} \notin E$ für alle $u,v \in U$
 - Independent set problem
 - compute a maximum set
Approximation Algorithm for Node Coloring

- **Algorithmus GreedyIS:**
 \[U = \emptyset, \ G = (V, E) \]

 while \(V \) not empty **do**

 Create graph with nodes \(V \)

 Choose nodes \(u \) with minimal degree

 Erase \(u \) and all neighbors of \(u \) in \(G \) from \(V \)

 Insert \(u \) into \(U \)

 od

 Return \(U \)

- **GreedyIS**
 - computes a maximal (non extendable) independent set
 - run-time \(O(|V|+|E|) \)
Approximation Algorithm for Node Coloring

- **Algorithm GreedyCol:**

 \[G = (V, E), \text{Color} = 1; \]

 while \(V \) not empty do

 Create \(G \) from \(V \) and determine \(U \) with \(\text{GreedyIS}(G) \)

 Color all nodes in \(U \) with Color

 Remove \(U \) from \(V \) and increment Color

 od

 Return node coloring

- **GreedyCol computes in polynomial time a node coloring with \(O(n/\log n) \) colors**

 - There are better approximation algorithms
Models

- **Color model**
 - Neighbored cells have different frequencies
 - Leads to node coloring of the interference graph

- **Advantage**
 - Simple model

- **Disadvantage**
 - No efficient algorithms are known for Coloring
 - Not an adequate model
 - relationship of received signal strength and influence of neighbored frequencies is not reflected by the model
Labeling versus Coloring

- **Coloring**
 - Use of reusable frequencies
 - Minimize the total number of colors = frequencies available with minimum frequency distances

- **Labelling**
 - Each frequency is assigned only once
 - Frequency distances must be complied
 - Minimize used spectrum

- **Set-(Coloring/Labeling)**
 - A set of frequencies is assigned to a station instead of a single frequency

- **Distance function d of the interference graph**
Algorithms for Radio Networks

Frequency Assignment

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer