Algorithms for Radio Networks

Frequency Assignment

University of Freiburg
Technical Faculty
Computer Networks and Telematics Prof. Christian Schindelhauer

Cellular Networks

- Original problem

- Rigid frequency multiplexing for a given set of base stations
- Given
- positions of base stations
- Output
- frequency assignment which minimizes the number of interferences
- How to model acceptable frequency assignments?

Frequency Assignment

- Given:
- set of points $V \subseteq \mathbb{I R}^{2}$ of n base stations B_{1}, \ldots, B_{n}
- each base station covers an area
- Output:
- function $\mathrm{f}: ~ V \rightarrow \mathrm{IN}$, which maps each base station to a frequency respecting frequency and distance conditions
- Sample restraints
- minimize the number of given frequencies
- minimize the width of the frequency range
- minimize the number of interferences

Frequency Assignment: Models

- Interference graph $G_{l n t}$:
- nodes are base stations
- edges describe possible interferences between base stations

Graph-Färbungsproblem

Graph Coloring

- node k-coloring
- Given undirected graph $G=(V, E)$
- A mapping $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{F}$ is a k-node coloring
- if $f(u) \neq f(v)$ for $\{u, v\} \in E$ and $|F|=k$.
- chromatic number $X(G)$
- is the minimum k to color graph G
- clique number $\omega(\mathbf{G})$
- is the largest number of nodes which form a complete subgraph (clique) in G
- Relationship of $\omega(G), X(G)$ and the degree of the graph $\Delta(G)$
- $\omega(G) \leq x(G) \leq \Delta(G)+1$

Computational Complexity

- The degree can be easily seen from the graph description
- Clique number
- Computation $\omega(\mathrm{G})$ is NP-hard
- Can be computed in time $O\left(n^{\omega(G)}\right)$
- Chromatic Number
- k-Coloring of a graph is NP-complete (if $k \geq 3$)
- computation of the chromatic number is NP-hard
- Can be computed in Zeit $\mathrm{O}\left(\mathrm{X}(\mathrm{G})^{n}\right)$

Approximation Algorithms

- Let $P(I)$ be the solution of an optimization problem for instance I
- $I=G$
- $P(I)=x(G) \quad$ [chromatic number of G]
- Definition:
- P can be absolutely approximated with additive term $f(n)$, if there is a polynomial time bound bounde algorithm A such that for allinstances I of size n

$$
|P(I)-A(I)| \leq f(n)
$$

- P can be relatively approximated with factor $g(n)$, if there is a polynomial time bound bounded algorithm A such that for all instances I of size n

$$
\max \left\{\frac{P(I)}{A(I)}, \frac{A(I)}{P(I)}\right\} \leq g(n)
$$

Results for Graph Coloring

- Graph Coloring is NP-hard
- cannot be approximated by a factor of n^{ε} für $\varepsilon>0$ unless $N P \neq P$.
" „Can a given planar graph be colored with three colors"
- is NP-complete
- But:
- Every planar graph can be colored with four colors in polynomial time
- Every graph can be colored (if possible) with two colors in polynomial time
- There is an absolute approximation algorithm with quality $\mathrm{O}(\mathrm{n} / \log \mathrm{n})$ for the general coloring problem

Approximation Algorithm for Node Coloring

- Independent Set Problem (NP complete):
- Let $G=(V, E)$ be a graph and $U \subseteq V$.
- U is independent, if: $\{u, v\} \notin E$ für alle $u, v \in U$
- Independent set problem
- compute a maximum set

Approximation Algorithm for Node Coloring

- Algorithmus GreedyIS:
$U=\varnothing, G=(V, E)$
while V not empty do
Create graph with nodes V
Choose nodes u with minimal degree
Erase u and all neighbors of u in G from V
Insert u into U
od
Return U
- GreedyIS
- computes a maximal (non extendable) independent set
- run-time $O(|V|+|E|)$

Approximation Algorithm for Node Coloring

- Algorithm GreedyCol:
$G=(V, E)$, Color $=1$;
while V not empty do
Create G from V and determine U with GreedyIS(G)
Color all nodes in U with Color
Remove U from V and increment Color
od
Return node coloring
- GreedyCol computes in polynomial time a node coloring with $O(n / \log n)$ colors
- There are better approximation algorithms

Models

- Color model
- Neighbored cells have different frequencies
- Leads to node coloring of the interference graph
- Advantage
- Simple model
- Disadvantage
- No efficient algorithms are known for Coloring
- Not an adequate model
- relationship of received signal strength and influence of neighbored frequencies is not reflected by the model

Labeling versus Coloring

- Coloring
- Use of reusable frequencies
- Minimize the total number of colors = frequencies available with minimum frequency distances
- Labelling
- Each frequency is assigned only once
- Frequency distances must be complied
- Minimize used spectrum
- Set-(Coloring/Labeling)
- A set of frequencies is assigned to a station instead of a single frequency
- Distance function d of the interference graph

Algorithms for Radio Networks

Frequency Assignment

University of Freiburg
Technical Faculty
Computer Networks and Telematics Prof. Christian Schindelhauer

