

Algorithms for Radio Networks

Flooding and DSR

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer

Characteristics of routing in mobile ad hoc networks

Movement of participants

- Reconnecting and loss of connection is more common than in other wireless networks
- Especially at high speed
- Other performance criteria
 - Route stability in the face of mobility
 - energy consumption

Unicast Routing

- Variety of protocols
 - Adaptations and new developments
- No protocol dominates the other in all situations
 - Solution: Adaptive protocols?

Routing in MANETs

Routing

- Determination of message paths
- Transport of data

Protocol types

- proactive
 - Routing tables with updates
- reactive
 - repairm of message paths only when necessary
- hybrid
 - combination of proactive and reactive

Routing Protocols

Proactive

- Routes are demand independent
- Standard Link-State und Distance-Vector Protocols
 - DestinationSequencedDistance Vector(DSDV)
 - Optimized LinkState Routing(OLSR)

Reactive

- Route are determined when needed
 - Dynamic Source Routing (**DSR**)
 - Ad hoc On-demand Distance Vector (AODV)
 - Dynamic MANETOn-demandRouting Protocol
 - Temporally Ordered Routing Algorithm (TORA)

Hybrid

- combination of reactive und proactive
 - Zone RoutingProtocol (**ZRP**)
 - Greedy PerimeterStateless Routing(GPSR)

Trade-Off

- Latenzcy because of route discovery
 - Proactive protocols are faster
 - Reactive protocols need to find routes
- Overhead of Route discovery and maintenance
 - Reactive protocols have smaller overhead (number of messages)
 - Proactive protocols may have larger complexity
- Traffic-Pattern and mobility
 - decides which type of protocol is more efficient

Flooding

Algorithm

- Sender S broadcasts data packet to all neighbors
- Each node receiving a new packet
 - broadcasts this packet
 - if it is not the receiver

Sequence numbers

- identifies messages to prevent duplicates
- Packet always reaches the target
 - if possible

Flooding Example

Flooding for Data Delivery

Packet for Receiver F

Flooding for Data Delivery

Flooding for Data Delivery

Receiver F gets packet and stops

Flooding

Advantage

- simple and robust
- the best approach for short packet lengths, small number of participants in highly mobile networks with light traffic

Disadvantage

- High overhead
- Broadcasting is unreliable
 - lack of acknowledgements
 - hidden, exposed terminals lead to data loss or delay

Flooding

- Produces too many unnecessary (long) data packets
 - in the worst case, each participant sends each packet
 - many long transmissions collisions lead to long waiting times in the medium access
- Better approach:
 - Use of control packets for route determination
 - Flooding of control packet leads to DSR

Dynamic Source Routing (DSR)

Johnson, Maltz

 Dynamic Source Routing in Ad Hoc Wireless Networks, Mobile Computing, 1996

Algorithm

- Sender initiates route discovery by flooding of Route-Request (RREQ)-packets
 - Each forwarding node appends his ID to the RREQ-packet
- The receiver generates the routing information from the RREQ packet by producing a Route-Reply (RREP)-packet
 - using the route information of the packet is sent back to the sender
- Transmitter sends data packet along with route information to the receiver

Datenpaket[S,A,E,F]

Requirements

Route Reply

- requires bidirectional connections
- unidirectional links
 - must be tested for symmetry
 - or Route-Reply must trigger its own route-request
- Data packet has all the routing information in the header
 - hence: Source-Routing
- Route determination
 - if no valid route is known

DSR Extensions and Modifications

- Intermediate nodes can cache information RREP
 - Problem: stale information
- Listening to control messages
 - can help to identify the topology
- Random delays for answers
 - To prevent many RREP-packets (Reply-Storm)
 - if many nodes know the answer (not for media access)
- Repair
 - If an error is detected then usually: route recalculation
 - Instead: a local change of the source route
- Cache Management
 - Mechanisms for the deletion of outdated cache information

DSR Optimization Route Caching

- Each node stores information from all available
 - Header of data packets
 - Route Request
 - Route-Reply
 - partial paths
- From this information, a route reply is generated

Data packet [G,F,E,A]

DSR Optimization Route Caching

- If any information is incorrect
 - because a route no longer exists
 - then this path is deleted from the cache
 - alternative paths are used
 - or RREQ is generated
- Missing links are distributed by (RERR) packets in the network

Route Error

DSR Discussion

Benefits

- Routes are maintained only between communicating nodes
- Route caching reduces route search
- Caches help many alternative routes to find

Disadvantages

- Header size grows with distance
- Network may be flooded with route requests
- Route-Reply-Storm
- Outdated information may cause cache overhead

Algorithms for Radio Networks

Flooding and DSR

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer

