

Algorithms for Radio Networks

Routing, Distance-Vector, Link-State

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer

Protocols of the Internet

Application	Telnet, FTP, HTTP, SMTP (E-Mail),
Transport	TCP (Transmission Control Protocol) UDP (User Datagram Protocol)
Network	IP (Internet Protocol) + ICMP (Internet Control Message Protocol) + IGMP (Internet Group Management Protocol)
Host-to-Network	LAN (e.g. Ethernet, Token Ring etc.)

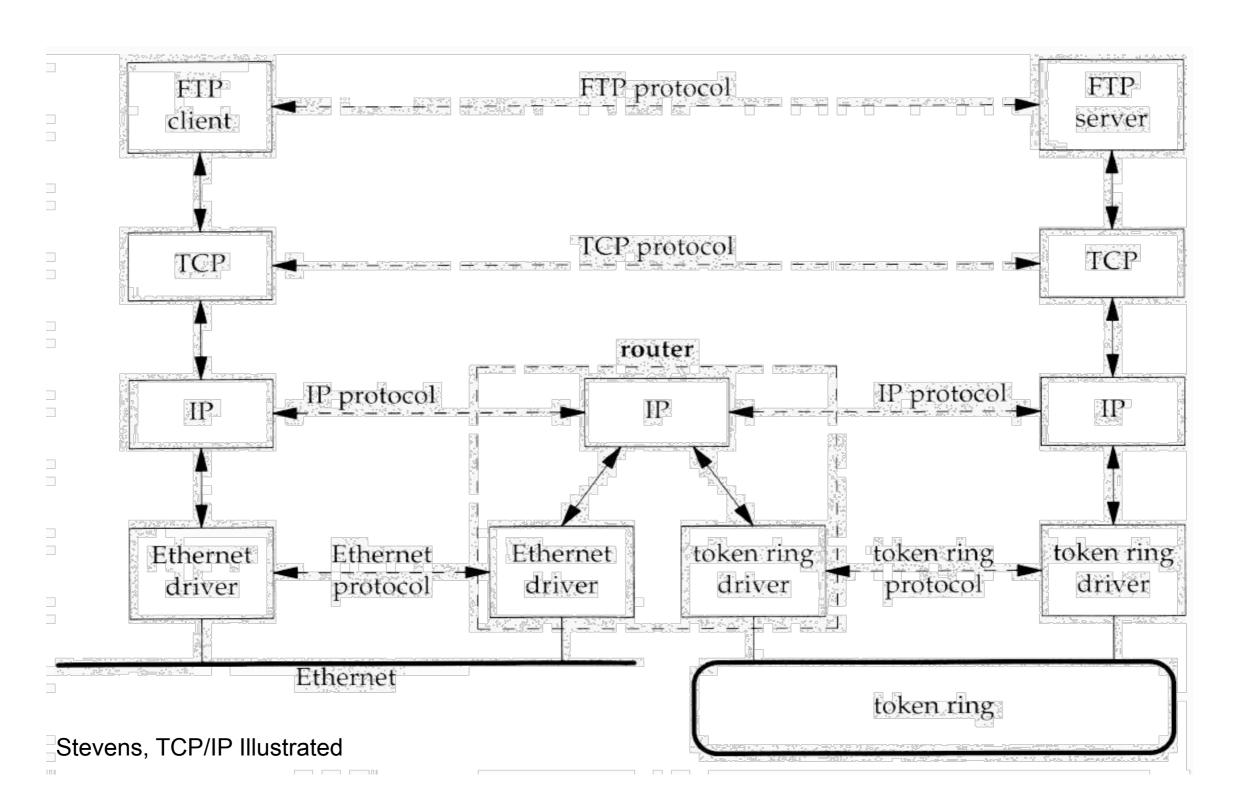
TCP/IP Layers

▶ 1. Host-to-Network

 Not specified, depends on the local network,k e.g. Ethernet, WLAN 802.11, PPP, DSL

▶ 2. Routing Layer/Network Layer (IP - Internet Protocol)

- Defined packet format and protocol
- Routing
- Forwarding


3. Transport Layer

- TCP (Transmission Control Protocol)
 - Reliable, connection-oriented transmission
 - Fragmentation, Flow Control, Multiplexing
- UDP (User Datagram Protocol)
 - hands packets over to IP
 - unreliable, no flow control

▶ 4. Application Layer

 Services such as TELNET, FTP, SMTP, HTTP, NNTP (for DNS), ...

Example: Routing between LANs

Routing Tables and Packet Forwarding

IP Routing Table

- contains for each destination the address of the next gateway
- destination: host computer or sub-network
- default gateway

Packet Forwarding

- IP packet (datagram) contains start IP address and destination IP address
 - if destination = my address then hand over to higher layer
 - if destination in routing table then forward packet to corresponding gateway
 - if destination IP subnet in routing table then forward packet to corresponding gateway
 - otherwise, use the default gateway

IP Packet Forwarding

IP -Packet (datagram) contains...

- TTL (Time-to-Live): Hop count limit
- Start IP Address
- Destination IP Address

Packet Handling

- Reduce TTL (Time to Live) by 1
- If TTL ≠ 0 then forward packet according to routing table
- If TTL = 0 or forwarding error (buffer full etc.):
 - delete packet
 - if packet is not an ICMP Packet then
 - * send ICMP Packet with
 - start = current IP Address
 - destination = original start IP Address

Static and Dynamic Routing

Static Routing

- Routing table created manually
- used in small LANs

Dynamic Routing

- Routing table created by Routing Algorithm
- Centralized, e.g. Link State
 - Router knows the complete network topology
- Decentralized, e.g. Distance Vector
 - Router knows gateways in its local neighborhood

Intra-AS Routing

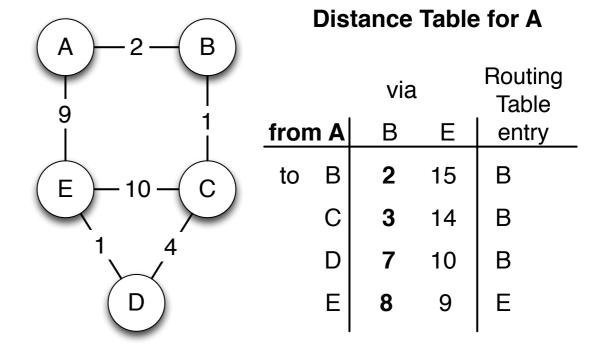
- Routing Information Protocol (RIP)
 - Distance Vector Algorithmus
 - Metric = hop count
 - exchange of distance vectors (by UDP)
- Interior Gateway Routing Protocol (IGRP)
 - successor of RIP
 - different routing metrics (delay, bandwidth)
- Open Shortest Path First (OSPF)
 - Link State Routing (every router knows the topology)
 - Route calculation by Dijkstra's shortest path algorithm

Distance Vector Routing Protocol

Distance Table data structure

- Each node has a
 - Line for each possible destination
 - Column for any direct neighbors

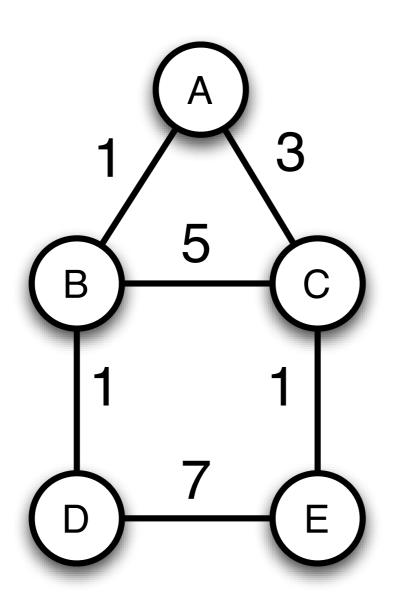
Distributed algorithm


each node communicates only with its neighbors

Asynchronous operation

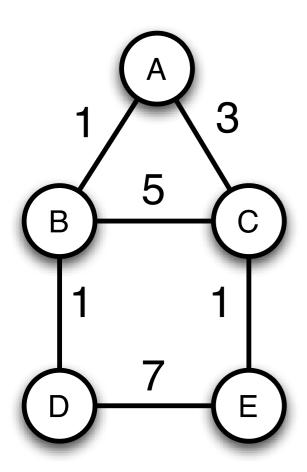
Nodes do not need to exchange information in each round

Self-terminating


exchange unless no update is available

Distance Table for C

		Routing Table			
from C		В	D	Е	entry
to	Α	3	11	18	В
	В	1	9	21	В
	D	6	4	11	D
	Е	7	5	10	D


Distance Vector Routing Example

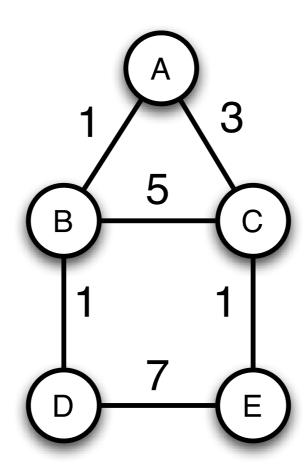
from A	vi	via		
to	В	С	entry	
В	1	8	В	
С	6	3	С	
D	2	9	В	
E	7	4	С	

Distance Vector Routing

from A	vi	а	
to	В	С	entry
В	B 1		В
С	С -		С
D	D -		-
E	-	-	-

from		ontry		
B to	Α	С	D	entry
Α	1	-	-	Α
С	1	3	•	С
D	D		1	С
E	1	•	8	D

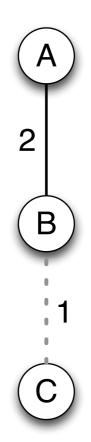
from		ontr.		
C to	Α	В	E	entry
Α	3	-	ı	A
В	•	5	•	В
D	•	-	8	E
E	-	-	1	E


from		Entry		
B to	Α	С	D	Entry
Α	1	1	-	A
С	ı	5	-	С
D	D - 1		1	D
E	-	-	8	D

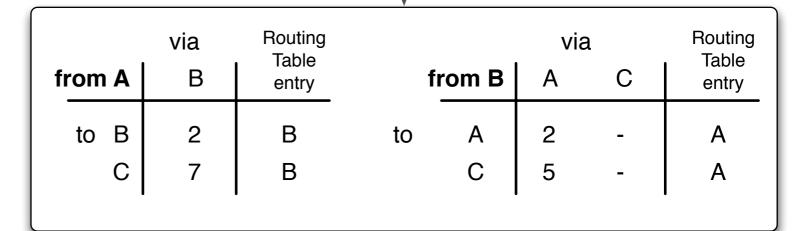
Distance Vector Routing

from		Entro.		
C to	Α	В	E	Entry
Α	3	1	ı	Α
В	-	5	-	В
D	-	1	8	E
E	-	1	1	E

from		Fate.		
B to	Α	С	D	Entry
Α	1	8	1	Α
С	ı	5	•	С
D	•	13	1	D
E	1	6	8	С



from		Faster			
C to	Α	A B E		Entry	
Α	3	6	ı	Α	
В	-	5	•	В	
D	-	6	8	В	
E	-	13	1	E	


"Count to Infinity" - Problem

- Good news travels fast
 - A new connection is quickly at hand
- Bad news travels slowly
 - Connection fails
 - Neighbors increase their distance mutally
 - "Count to Infinity" Problem

"Count to Infinity" -Problem

	_	via	Routing Table	_	_	Via	a o	Routing Table
fron	n A	В	entry	fı	rom B	Α	С	entry
to	В	2	В	to	Α	2	-	Α
	С	3	В		С	5	-	Α
	•	1	1					l

		via	Routing			via	a	Routing Table
fror	n A	В	Table entry	fr	om B	Α	С	entry
to	В	2	В	to	Α	2	-	Α
	С	7	В		С	9	-	Α
	•	,	•		·	,		•

Algorithms for Radio Networks Prof. Christian Schindelhauer

Computer Networks and Telematics University of Freiburg

Link-State Protocol

Link state routers

- exchange information using Link State Packets (LSP)
- each node uses shortest path algorithm to compute the routing table

LSP contains

- ID of the node generating the packet
- Cost of this node to any direct neighbors
- Sequence-no. (SEQNO)
- TTL field for that field (time to live)

Reliable flooding (Reliable Flooding)

- current LSP of each node are stored
- Forward of LSP to all neighbors
 - except to be node where it has been received from
- Periodically creation of new LSPs
 - with increasing SEQNO
- Decrement TTL when LSPs are forwarded

Algorithms for Radio Networks

Routing, Distance-Vector, Link-State

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer

