

Algorithms for Radio Networks

Geometric Routing

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

Dienstag, 6. Dezember 11

Position Based Routing

- Routing target:
 - geometric position
 - not a network address
- Idea
 - send message to the neighbor closest to the target node (greedy strategy)

Advantagements

- only local decisions
- no routing tables
- scalable

Position Based Routing

Prerequisites

- Each node knows its position (e.g. GPS)
- Positions of neighbors are known (beacon messages)
- Target position is known (location service)

First Approaches

- Routing in packet radio networks
- Greedy strategies:
 - MFR: Most Forwarding within Radius [Takagi, Kleinrock 1984]
 - NFP: Nearest with Forwarding Progress [Hou, Li 1986]

PBR in Radio Networks

- Combination of greedy routing and recovery strategy
- Recovery from local minima (right hand rule)
 - Example: GPSR [Karp, Kung 2000]

Position Based Routing

- Combination of greedy routing and recovery strategy
- Recovery from local minima (right hand rule)
 - Example: GPSR [Karp, Kung 2000]

Lower Bound

 Lower bound for position based routing [Kuhn et al. 2002]:

d = length of shortest path

time = #hops, traffic = #messages

Algorithms for Radio Networks Prof. Christian Schindelhauer Computer Networks and Telematics University of Freiburg

Algorithms for Radio Networks

Geometric Routing

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

Dienstag, 6. Dezember 11