

Algorithms for Radio Networks

Random Waypoint Considered Harmful

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

Random Waypoint Mobility Model

- Move directly to a randomly chosen destination
- Choose speed uniformly from [V_{min}, V_{max}]
- Stay at the destination for a predefined pause time
- Repeat from the beginning

Broch, J; Maltz DA, Johnson DB, Hu Y-C, and Jetcheva J (1998). "A performance comparison of multi-hop wireless ad hoc network routing protocols" in Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom98), ACM, October 1998

2

Random Waypoint Considered Harmful

Yoon, Liu, Noble

 Random Waypoint Considered Harmful, INFOCOM 2003, S. 1312-1321

Problem:

 If v_{min}=0 then the average speed decays over the simulation time

Random Waypoint Considered Harmful

- Random Waypoint (V_{min}, V_{max}, T_{wait})-Model
 - All participants start with random position (x,y) in [0,1]x[0,1]
 - For all participants $i \in \{1, ..., n\}$ repeat forever:
 - Uniformly choose next position (x',y') in [0,1]x[0,1]
 - Uniformly choose speed v_i from (V_{min} , V_{max}]
 - Go from (x,y) to (x',y') with speed v_i
 - Wait at (x',y') for time T_{wait} .
 - (x,y) ← (x',y')

Random Waypoint Considered Harmful

• What one might expect

- The average speed is $(V_{min} + V_{max})/2$
- Each point is visited with same probability
- The system stabilizes very quickly
- All these expectations are wrong!!!
- Reality
 - The average speed is much smaller
 - Average speed tends to 0 for $V_{min} = 0$
 - The location probability distribution is highly skewed
 - The system stabilizes very slow
 - For V_{min} = 0 it never stabilizes

Why?

Algorithms for Radio Networks Prof. Christian Schindelhauer

- Assumption to simplify the analysis:
 - Replace the rectangular area by an unbounded plane
 - Choose the next position uniformly within a disk of radius R_{max} with the current position as center
 - Set the pause time to 0:
 T_{wait} = 0
 - This increases the average speed
 - supports our argument

 The probability density function of speed of each node

$$V_{\min} \le v \le V_{\max}$$

• Given by

$$f_V(v) = \frac{1}{V_{\max} - V_{\min}}$$

since f_V(v) is constant and

$$\int_{v=V_{\min}}^{V_{\max}} f_V(v) \, dv = 1$$

• The Probability Density Function (pdf) of travel distance R:

$$f_R(r) = \frac{2r}{R_{\max}^2} \qquad \text{for } 0 \le r \le R_{\max}$$

The Probability Density Function (pdf) of travel time:

$$f_{S}(s) = \begin{cases} \frac{2s}{3R_{\max}^{2}} (V_{\max}^{2} + V_{\min}^{2} + V_{\max}V_{\min}) , & 0 \le s \le \frac{R_{\max}}{V_{\max}} \\ \frac{2R_{\max}}{3(V_{\max} - V_{\min})} \frac{1}{s^{2}} - \frac{2V_{\min}^{3}}{3R_{\max}^{2}(V_{\max} - V_{\min})}s , & \frac{R_{\max}}{V_{\max}} \le s \le \frac{R_{\max}}{V_{\min}} \\ 0 & s \ge \frac{R_{\max}}{V_{\min}} . \end{cases}$$

Algorithms for Radio Networks Prof. Christian Schindelhauer

The Probability Density Function (pdf) of travel time:

 \overline{V}

Average speed of a node

$$= \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} v(t) dt$$
$$= \lim_{T \to \infty} \frac{\sum_{k=1}^{K(T)} r_{k}}{\sum_{k=1}^{K(T)} s_{k}}$$
$$= \lim_{T \to \infty} \frac{\frac{1}{K(T)} \sum_{k=1}^{K(T)} r_{k}}{\frac{1}{K(T)} \sum_{k=1}^{K(T)} r_{k}}$$
$$= \frac{E[R]}{E[S]} = \frac{V_{max} - V_{min}}{\ln\left(\frac{V_{max}}{V_{min}}\right)}.$$

Problems of Random Waypoint

- In the limit not all positions occur with the same probability
- If the start positions are uniformly at random
 - then the transient nature of the probability space changes the simulation results
- Solution:
 - Start according the final spatial probability distribution

Algorithms for Radio Networks

Random Waypoint Considered Harmful

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

