Algorithms for Radio Networks

Random Waypoint Considered Harmful

University of Freiburg
Technical Faculty
Computer Networks and Telematics Prof. Christian Schindelhauer

Random Waypoint Mobility Model

- Move directly to a randomly chosen destination
- Choose speed uniformly from [$\mathrm{V}_{\text {min }}, \mathrm{V}_{\text {max }}$]
- Stay at the destination for a predefined pause time
- Repeat from the beginning

Broch, J; Maltz DA, Johnson DB, Hu Y-C, and Jetcheva J (1998). "A performance comparison of multi-hop wireless ad hoc network routing protocols" in Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom98), ACM, October 1998

Random Waypoint Considered Harmful

- Yoon, Liu, Noble
- Random Waypoint Considered Harmful, INFOCOM 2003, S. 1312-1321
- Problem:
- If $\mathrm{v}_{\text {min }}=0$ then the average speed decays over the simulation time

Random Waypoint Considered Harmful

- Random Waypoint ($\mathbf{V}_{\text {min }}, \mathbf{V}_{\text {max }}, \mathbf{T}_{\text {wait }}$)-Model
- All participants start with random position (x, y) in [0,1]×[0,1]
- For all participants $i \in\{1, \ldots, n\}$ repeat forever:
- Uniformly choose next position (x^{\prime}, y^{\prime}) in $[0,1] \times[0,1]$
- Uniformly choose speed v_{i} from $\left(\mathrm{V}_{\text {min }}, \mathrm{V}_{\text {max }}\right.$]
- Go from (x, y) to (x^{\prime}, y^{\prime}) with speed v_{i}
- Wait at (x^{\prime}, y^{\prime}) for time $T_{\text {wait }}$
- $(x, y) \leftarrow\left(x^{\prime}, y^{\prime}\right)$

Random Waypoint Considered Harmful

- What one might expect
- The average speed is $\left(\mathrm{V}_{\text {min }}+\mathrm{V}_{\max }\right) / 2$
- Each point is visited with same probability
- The system stabilizes very quickly
- All these expectations are wrong!!!
- Reality
- The average speed is much smaller
- Average speed tends to 0 for $\mathrm{V}_{\text {min }}=0$
- The location probability distribution is highly skewed
- The system stabilizes very slow
- For $\mathrm{V}_{\text {min }}=0$ it never stabilizes
- Why?

The Average Speed is much Smaller

- Assumption to simplify the analysis:
- Replace the rectangular area by an unbounded plane
- Choose the next position uniformly within a disk of radius $\mathrm{R}_{\max }$ with the current position as center
- Set the pause time to 0 :
$\mathrm{T}_{\text {wait }}=0$
- This increases the average speed
- supports our argument

The Average Speed is much Smaller

- The probability density function of speed of each node

$$
V_{\min } \leq v \leq V_{\max }
$$

- Given by

$$
f_{V}(v)=\frac{1}{V_{\max }-V_{\min }}
$$

, since $\mathrm{fv}(\mathrm{v})$ is constant and

$$
\int_{v=V_{\min }}^{V_{\max }} f_{V}(v) d v=1
$$

The Average Speed is much Smaller

- The Probability Density Function (pdf) of travel distance R:

$$
f_{R}(r)=\frac{2 r}{R_{\max }^{2}}
$$

$$
\text { for } 0 \leq r \leq R_{\max }
$$

- The Probability Density Function (pdf) of travel time:

$$
f_{S}(s)= \begin{cases}\frac{2 s}{3 R_{\max }^{2}}\left(V_{\max }^{2}+V_{\min }^{2}+V_{\max } V_{\min }\right), & 0 \leq s \leq \frac{R_{\max }}{V_{\max }} \\ \frac{2 R_{\max }}{3\left(V_{\max }-V_{\min }\right)} \frac{1}{s^{2}}-\frac{2 V_{\min }^{3}}{3 R_{\max }^{2}\left(V_{\max }-V_{\min }\right)} s, & \frac{R_{\max }}{V_{\max }} \leq s \leq \frac{R_{\max }}{V_{\min }} \\ 0 & s \geq \frac{R_{\max }}{V_{\min }}\end{cases}
$$

The Average Speed is much Smaller

- The Probability Density Function (pdf) of travel time:

$$
f_{S}(s)= \begin{cases}\frac{2 s}{3 R_{\max }^{2}}\left(V_{\max }^{2}+V_{\min }^{2}+V_{\max } V_{\min }\right), & 0 \leq s \leq \frac{R_{\max }}{V_{\max }} \\ \frac{2 R_{\max }}{3\left(V_{\max }-V_{\min }\right)} \frac{1}{s^{2}}-\frac{2 V_{\min }^{3}}{3 R_{\max }^{2}\left(V_{\max }-V_{\min }\right)} s, & \frac{R_{\max }}{V_{\max }} \leq s \leq \frac{R_{\max }}{V_{\min }} \\ 0 & s \geq \frac{R_{\max }}{V_{\min }}\end{cases}
$$

$$
\underbrace{f_{S}(s)}_{\frac{\mathbf{R}_{\max }}{\mathbf{V}_{\max }}} \quad E[S]=\frac{2 R_{\max }}{3\left(V_{\max }-V_{\min }\right)} \ln \left(\frac{V_{\mathrm{max}}}{V_{\min }}\right)
$$

Prof. Christian Schindelhauer

The Average Speed is much Smaller

- Average speed of a node

$$
\begin{aligned}
\bar{V} & =\lim _{T \longrightarrow \infty} \frac{1}{T} \int_{0}^{T} v(t) d t \\
& =\lim _{T \longrightarrow \infty} \frac{\sum_{k=1}^{K(T)} r_{k}}{\sum_{k=1}^{K(T)} s_{k}} \\
& =\lim _{T \longrightarrow \infty} \frac{\frac{1}{K(T)} \sum_{k=1}^{K(T)} r_{k}}{\frac{1}{K(T)} \sum_{k=1}^{K(T)} s_{k}} \\
& =\frac{E[R]}{E[S]}=\frac{V_{\max }-V_{\min }}{\ln \left(\frac{V_{\max }}{V_{\text {min }}}\right)} .
\end{aligned}
$$

Problems of Random Waypoint

- In the limit not all positions occur with the same probability
- If the start positions are uniformly at
random
- then the transient nature of the probability space changes the simulation results

- Solution:

- Start according the final spatial probability distribution

Algorithms for Radio Networks

Random Waypoint Considered Harmful

University of Freiburg
Technical Faculty
Computer Networks and Telematics Prof. Christian Schindelhauer

