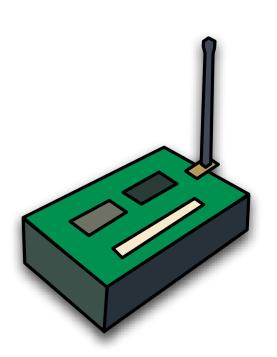


Algorithms for Radio Networks

Wireless Sensor Networks - Introduction

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer


Wireless Sensor Networks (WSN)

Wireless sensor networks (WSN)

- Network embedded in an environment
 - measure and interact with the environment
- Nodes collect, process and use this information
- Wireless sensor & actuator networks (WSAN)

WSN Nodes

- Sensors
- Actuators
- Microprocessor
- Transceiver

Algorithms for Radio Prof. Christian Schindelnauer puter Networks and Telematics University of Freiburg

Example

- Smoke detection network
 - Sensors:
 - smoke sensors
 - Actuators:
 - acoustic warning signal
 - Optical test signal
 - Transceiver and microprocessor
- Alarms are activated at all connected smoke detectors

Roles in Wireless Sensor Networks

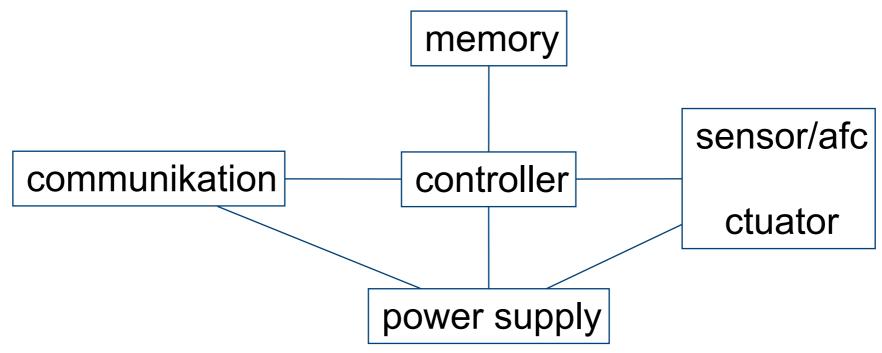
Data Sources

- data collection and transmission
- equipped with sensors

Data sinks

- collects all data
- part of the WSN and external entity
 - e.g. PDA, gateway, PC, etc.

Actuator


- changes the environment
- · e.g. light source, speakers, engine

Architecture of a WSN Unit

Main components of a WSN unit

- controller
- communications unit
- sensor / actuator
- memory
- power

Technologies for WSN

Mass production and price reduction

- for wireless communications
- Micro-controller
- sensors
- batteries

Miniaturization

- "Smart dust"
- Energy harvesting
 - power supply from the environment
 - e.g. Light, heat, motion, chemical

Controller

Types

- Microcontroller
 - microprocessor for embedded applications
 - low power consumption
 - inexpensive
- FPGA (Field Programmable Gate Array)
 - too high power consumption
- ASIC (Application Specific Integrated Circuit)
 - special circuit design
 - best but most expensive solution

Sample Configuration

Texas Instruments MSP430

- 16-bit RISC core
- up to 4 MHz
- 2-10 kbytes RAM
- several analog-digital converters
- Atmel ATMega 128L (z.B. Mica-2)
 - 8-bit controller
 - 128 kB Flash program memory
 - 4-8 kB SRAM
 - 4-7,4 Mhz

Energy efficiency

Standard

- Power supply from batteries
- Long run times for
 - Nodes and overall network
- Necessary: energy-efficient protocols
 - Multi-hop routes with low energy
 - Battery capacity as a parameter for algorithms
 - Energy and networking poses a conflict of interest

MANET versus WSN

Similarities

- Self-Organization
- Energy efficiency is necessary
- Wireless multi-hop networks
- No centralized control or infrastructure

MANET versus WSN differences

MANETS

- larger bandwidths
- computationally stronger nodes
- interconnect users (for example, to laptops, PDAs)

WSN

- highly application-oriented
- interact with the environment
- sometimes have more nodes
- stronger requirements for energy efficiency and maintenance
- longer life time

 individual WSN nodes dispensable

WSN

data centric

MANET

ID-centric

mobility

- sometimes in WSN much higher than in MANETs
- e.g. If mobility is measured

12

WSN Applications

Disaster relief

- sensor nodes are dropped from planes over fires
- Nodes measure temperature
 - online collection of fires

Biology

- biodiversity acquisition
- sensor nodes collect wildlife
 - e.g. rare animals in remote areas
- detection of migration of animals
 - e.g. Zebras, cows, storks

WSN Applications

Intelligent buildings or bridges

- Reduction of energy wastage
 - by humidity, ventilation, cooling and heating control
- Measurement of space usage, temperature, air currents ...
- Measurement of the building load to earthquakes, earth movements

Environmental measurements

 e.g. measurement of the Gulf Stream, other water currents, weather balloons

WSN Application

Industrial control

- building control
 - Theft, access
- leakage control in chemical plants
- plant control

Machine condition monitoring and preventive control

 embedding of sensors and control units, where cables are not available

15

such as tire pressure monitoring

WSN Application

Automated agriculture

- fertilizer, pesticide and irrigation control
- sensors monitor the soil chemistry and soil physics

Medicine and health care

- postoperative or intensive care
- long-term monitoring of chronically ill or elderly

WSN Application

Logistics

- goods are equipped with sensors
- localization and Quality Control

Telematics

better traffic control through more accurate traffic monitoring

Intelligent roads

cars as traffic sensors

Algorithms for Radio Networks

Wireless Sensor Networks - Introduction

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer

