

Algorithms for Radio Networks

Wireless Sensor Networks - Special Problems

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

WSN Types of Applications

- Types of interaction between source and sink
- Event detection
 - nodes detect events
 - report to sinks
- Periodic measurement
 - environmental data collection, tracking
- Approximation of a function
 - sensor network approximates a function of environmental data
 - e.g. temperature map

WSN Types of Applications

Border detection

- Find limits or other structure
- e.g. fire border, freezing border

Tracking

- position detection or tracking a target object
- e.g. intruder alarm, rare animal detection

Placement of the Mote

- How are the sensors?
- Ejected from aircraft
 - random deployment
 - results in uniform random distribution
 - theoretically, often considered rare in practice
- Planned placement
 - regular deployment
 - depends on the task

Placement of Motes

Mobile sensor nodes

- can move
 - e.g. to improve insertion site
- passive transport
 - wind, water, parasitic
- search for area of interest

Maintenance of the Network

Is it possible to supply the sensor nodes

- battery replacement
- replacement of defective equipment
- software update
- Necessary?
- Energy supply options
 - limited
 - with power supply
 - from network
 - from the environment, e.g. solar cells

• Service of a WSN

- not (only) message forwarding
- application is in the foreground, e.g. measurement of environment
- geography is part of the WSN
- other networks see geography as obstacles
- Quality of service
 - differently than in traditional networks

Fault tolerance

- Node failure should be compensated
 - empty batteries
 - destruction
- Lifetime
 - Lifetime of the network as an important node

Scalability

- Large number of nodes possible
- Density can vary greatly
 - node density depends on application
- Programmability
 - in the field may be necessary nodes need to be reprogrammed
 - i.e. programming via radio

Maintainability

- WSN has to adapt to change
- Self-control and self-monitoring
- Loss of nodes, and (re) admission of nodes is normal

Necessary Mechanisms

Multi-hop routes

- Accessibility, energy efficiency
- Energy-efficiency
 - communication, computation, sensors, actuators
- Self-configuration
 - Manual configuration is not possible
- Cooperation and computation within the network
 - nodes in the network to work on common goal
 - processing of data in the network can increase efficiency

Necessary Mechanisms

Data-centric networking

- focus is on data, not the node IDs (id-centric networking)
- increases the efficiency
- Locality
 - Where possible process data locally
- Trade-Offs
 - energy versus accuracy
 - latency versus efficiency

Algorithms for Radio Networks

Wireless Sensor Networks - Special Problems

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

