Algorithms for Radio Networks

WSN: Data Aggregation II
Data Aggregation

Minimal temperature: 17°C

\[\text{Minimal temperature: } 17°C \]
Routing Models for Data Aggregation

- **Address Centric Protocol**
 - each sensor sends independently towards the sink
 - not suitable for (real) aggregation

- **Data Centric Protocol**
 - Forwarding nodes can read and change messages

- **Literature**
 - Krishnamachari, Estrin, Wicker The Impact of Data Aggregation in Wireless Sensor Networks, Proc. of the 2nd Int. Conf. on Distributed Computing Systems Workshops (ICDCSW’02)
Energy Optimal Tree Structure

- **Given:**
 - set of data sources and a sink
 - communication graph G

- **Compute:**
 - Steiner tree T
 - sub-graph of G
 - connects all sources and sinks
 - number of edges is minimal

- **Alternative:**
 - edges have an (energy) weight
 - minimize the sum of edge weights
Steiner Tree Problem

Steiner point

Dienstag, 17. Januar 12
Theoretical Bounds

- Costs for address based Routing N_A
 \[N_A = \sum_i d_i \]
 - d_i: shortest distance from source i to sink s

- Cost for optimal data centric routing $N_D = \text{weight of Steiner-tree}$
 \[N_D \leq (k - 1)X + \min_i \{d_i\} \]
 - X: maximal shortest path between sources
 - k: number of sources

 \[N_D \geq \min_i \{d_i\} + k - 1 \]
Theoretical Bounds

- For fixed X and k and growing $\min_i \{d_i\}$

\[
\lim_{d \to \infty} \frac{N_D}{N_A} = \frac{1}{k}
\]
Theoretical Bounds

- **Theorem**
 - If the subgraph induced by the sources is connected, then the optimal routing can be computed in polynomial time.

- **Proof sketch**
 - Compute MST T for the sources.
 - Compute the shortest path from T to the sink.
Approximation Algorithm

- The Steiner tree approximation algorithm (of the last lecture) cannot be implemented efficiently in a WSN.
Suboptimal Aggregation

- Center at Nearest Source (CNS)
 - Data source closest to the sink collects all information
 - All other sources send the information on the shortest path to this source (center)
Suboptimal Aggregation

- Shortest Paths Trees (SPT)
 - Set of all shortest paths from the sources to the sink
Suboptimal Aggregation

- **Greedy Incremental Tree (GIT)**
 - Select the shortest path between the data source, closest to the sink, and the sink
 - Select successively the closest node to the tree and the shortest path to any of the tree nodes
Energy Saving by Data Aggregation

Number of Sources = 9

Krishnamachari, Estrin, Wicker The Impact of Data Aggregation in Wireless Sensor Networks, Proceedings of the 22nd International Conference on Distributed Computing Systems Workshops (ICDCSW'02)
Energy Saving by Data Aggregation

Communication Radius = 0.3

Average Number of Transmissions vs. Number of Sources

AC, CNSDC, SPTDC, GITDC, lower bound

Krishnamachari, Estrin, Wicker The Impact of Data Aggregation in Wireless Sensor Networks, Proceedings of the 22nd International Conference on Distributed Computing Systems Workshops (ICDCSW'02)
Algorithms for Radio Networks

WSN: Data Aggregation II