

Algorithms for Radio Networks

WSN: Data Aggregation II

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

Data Aggregation

Algorithms for Radio Networks Prof. Dr. Christian Schindelhauer

Routing Models for Data Aggregation

Address Centric Protocol

- each sensor sends independently towards the sink
- not suitable for (real) aggregation

Data Centric Protocol

• Forwarding nodes can read and change messages

Literature

 Krishnamachari, Estrin, Wicker The Impact of Data Aggregation in Wireless Sensor Networks, Proc. of the 2nd Int. Conf. on Distributed Computing Systems Workshops (ICDCSW'02)

Energy Optimal Tree Structure

- Given:
 - set of data sources and a sink
 - communication graph G
- Compute:
 - Steiner tree T
 - sub-graph of G
 - connects all sources and sinks
 - number of edges is minimal
- Alternative:
 - edges have an (energy) weight
 - minimize the sum of edge weights

Steiner Tree Problem

Theoretical Bounds

Costs for address based Routing N_A

$$N_A = \sum_i d_i$$

2

- d_i: shortest distance form source i to sink s
- Cost for optimal data centric routing N_D = weight of Steiner-tree

$$N_D \le (k-1)X + \min_i \{d_i\}$$

- X: maximal shortest path between sources
- k: number of sources

$$N_D \ge \min_i \{d_i\} + k - 1$$

Algorithms for Radio Networks Prof. Dr. Christian Schindelhauer

6

k = 3

Theoretical Bounds

For fixed X and k and growing min_i{d_i}

$$\lim_{d \to \infty} \frac{N_D}{N_A} = \frac{1}{k}$$

Theoretical Bounds

Theorem

 If the subgraph induced by the sources is connected, then the optimal routing can be computed in polynomial time

Proof sketch

- Compute MST T for the sources
- Compute the shortest path from T to the sink

Approximation Algorithm

 The Steiner tree approximation algorithm (of the last lecture) cannot be implemented efficiently in a WSN

Suboptimal Aggregation

Center at Nearest Source (CNS)

- Data source closest to the sink collects all information
- All other sources send the information on the shortest path to this source (center)

Suboptimal Aggregation

- Shortest Paths Trees (SPT)
 - Set of all shortest paths from the sources to the sink

Suboptimal Aggregation

- Greedy Incremental Tree (GIT)
 - Select the shortest path between the data source, closest to the sink, and the sink
 - Select successively the closest node to the tree and the shortest path to any of the tree nodes

Algorithms for Radio Networks Prof. Dr. Christian Schindelhauer

Energy Saving by Data Aggregation

Energy Saving by Data Aggregation

Algorithms for Radio Networks

WSN: Data Aggregation II

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

