

Algorithms for Radio Networks

Wireless Sensor Networks: Sensor Coverage

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

Literature

- Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless and Peer-to-Peer-Networks (Editor: Jie Wu)
 - Chapter 27: Models and Algorithms for Coverage Problems in Wireless Sensor Networks

Sensor Coverage

Sensor Coverage

Problem

- Given an area
- Cover the area with the smallest possible number of sensor nodes
- Variants
 - Circle Covering
 - 2-dimensional surface, sensor coverage is given by circles
 - Art Gallery Problem
 - Angled rooms: Sensor coverage and line of sight angle
 - * e.g. camera surveillance
 - Arbitrarily complexer variants conceivable

Naive approach

- Given a square of area A
- How many randomly positioned the sensors with unit disk cover the square?
- Naive calculation
 - Area of the unit circle: $r^2\pi$
 - Number of sensors required: $n = A / (r^2 \pi)$
- Intuition
 - O (A/r²) should be sufficient
- But: intuition is wrong!

Computer Networks and Telematics

University of Freiburg

• Naive approach

- Given a square of area A
- How many randomly positioned sensors with unit disk cover the square?
- Theorem
 - Let $n = A / (r^2 \pi)$
 - where A denotes the area of the square
 - and r denotes the sensor radius
 - To cover such a square of Θ (n log n) randomly placed sensors are necessary and sufficient

• Theorem

- Let $n = A / (r^2 \pi)$
 - where A denotes the area of the square
 - and r denotes the sensor radius
- To cover such a square of Θ (n log n) randomly placed sensors are necessary and sufficient
- Proof sketch (lower bound):
 - The probability that a given point is not covered by a sensor is at least

 $1-r^2\pi/A = 1-1/n$

- Consider n such points with distance r
- The probability that at least 1/ n log n sensors do not cover one of these point is therefore

$$\left(1 - \frac{1}{n}\right)^{\frac{1}{2}n\log n} \ge \left(\frac{1}{4}\right)^{\frac{1}{2}\log n} = \frac{1}{n}$$

7

Hence, the expected number of uncovered points is 1

Algorithms for Radio Networks Prof. Christian Schindelhauer

Theorem

- Let $n = A / (r^2 \pi)$
 - where A denotes the area of the square
 - and r denotes the sensor radius
- To cover such a square of Θ (n log n) randomly placed sensors are necessary and sufficient
- Proof sketch (upper bound):
 - By c n log n random sensors every square of size r/3 x r/3 is covered with probability 1-n^{-k}
 - where k grows linear with c
 - Then the whole square is covered with probability 1-n^{-k-1}

Mittwoch, 25. Januar 12

Optimal Deterministic Bound

Nurmela, Östergard

 Covering a square with up to 30 equal circles (Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 62, HUT-TCS-A62, Helsinki University of Technology, 2000)

How many circles can cover a square?

- A closed form solution is unknown
- However for a small number of circles the problem can be solved by exhaustive search

Nurmela, Östergard

Covering a square with up to 30 equal circles (Teknillisen korkeakoulun tietojenkäsittelyteoria laboratorion tutkimusraportti 62, HUT-TCS-A62, Helsinki University of Technology, 2000)

Algorithms for Radio Networks Prof. Christian Schindelhauer

korkeakoulun tietojenkäsittelyteoria HUT-TCS-A62, Helsinki University

Algorithms for Radio Networks Prof. Christian Schindelhauer

Nurmela, Östergard

 Covering a square with up to 30 equal circles (Teknillisen korkeakoulun tietojenkäsittelyteoria laboratorion tutkimusraportti 62, HUT-TCS-A62, Helsinki University of Technology, 2000)

Algorithms for Radio Networks Prof. Christian Schindelhauer

$$n = 16_{1}$$

Nurmela, Östergard

 Covering a square with up to 30 equal circles (Teknillisen korkeakoulun tietojenkäsittelyteoria laboratorion tutkimusraportti 62, HUT-TCS-A62, Helsinki University of Technology, 2000)

Algorithms for Radio Networks Prof. Christian Schindelhauer

$$n=17$$
 14

Nurmela, Östergard

 Covering a square with up to 30 equal circles (Teknillisen korkeakoulun tietojenkäsittelyteoria laboratorion tutkimusraportti 62, HUT-TCS-A62, Helsinki University of Technology, 2000)

n	r_n	G	n	r_n	G
1	0.70710678118654752440	D_4	16	0.16942705159811602395	C_2
2	0.55901699437494742410	D_2	17	0.16568092957077472538	C_1
3	0.50389110926865935327	D_1	18	0.16063966359715453523	D_1
4	0.35355339059327376220	D_4	19	0.15784198174667375675	C_1
5	0.32616058400398728086	D_1	20	0.15224681123338031005	D_1
6	0.29872706223691915876	C_2	21	0.14895378955109932188	C_1
7	0.27429188517743176508	D_2	22	0.14369317712168800049	D_2
8	0.26030010588652494367	D_2	23	0.14124482238793135951	D_2
9	0.23063692781954790734	D_1	24	0.13830288328269767697	C_1
10	0.21823351279308384300	D_2	25	0.13354870656077049693	D_1
11	0.21251601649318384587	D_2	26	0.13176487561482596463	C_1
12	0.20227588920818008037	C_2	27	0.12863353450309966807	D_2
13	0.19431237143171902878	C_1	28	0.12731755346561372147	D_2
14	0.18551054726041864107	D_1	29	0.12555350796411353317	C_1
15	0.17966175993333219846	C_1	30	0.12203686881944873607	C_2

- Nurmela, Östergard
 - Covering a square with up to 30 equal circles (Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 62, HUT-TCS-A62, Helsinki University of Technology, 2000)

Algorithms for Radio Networks Prof. Christian Schindelhauer

•

Art Gallery Problem

Given

- a room (described by polygon)
- Compute
 - Minimum number of cameras and their placement
 - such that the entire space is covered

Results

- Every room with n edges can be monitored by at most n / 3
- The exact solution is NP-hard
 - even in the two-dimensional case
- Polynomial time approximation with a factor O (log n)

Algorithms for Radio Networks

Wireless Sensor Networks: Sensor Coverage

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

