

# Algorithms for Radio Networks

Public Key Cryptography and Byzantine Generals Problems

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer



Samstag, 11. Februar 12

# **Asymmetric Encryption**

- E.g. RSA, Ronald Rivest, Adi
  Shamir, Lenard Adleman,
  1977
  - Diffie-Hellman, PGP
- Secret key: sk
  - Only the receivers of the message know the secret key
- Public key: pk
  - All participants know this key
- Generated by
  - keygen(sk) = pk

- Encryption function f and decryption function g
  - Known to everybody
- Encryption
  - f(pk,text) = code
  - everybody can generate code
- Decryption
  - g(sk,code) = code
  - only possibly by receiver

### Example: RSA

### R. Rivest, A. Shamir, L. Adleman

- On Digital Signatures and Public Key Cryptosystems, Communication of the ACM
- Algorithm is based on the computational complexity of integer factorization

### Ist example

- 15 = ?\*?
- 15 = 3 \* 5

### > 2nd example

386581864584112731912956727734835955
 7444790410289933586483552047443 =
 1234567890123456789012345678900209 \*
 313131313131313131313131313131300227

- To this day no efficient integer factorization algorithm is known
  - Yet, multiplication can be done efficiently
  - Prime numbers can be found
    efficiently
    - Since prime numbers occur frequently
    - Efficient randomized prime number tests are available

### RSA

### Generation of keys

- Choose two random prime numbers p, q with k bits (k ≥ 500).
- n = p·q
- e is a number relatively prime to (p - 1)·(q - 1).
- d = e<sup>-1</sup> mod (p 1)(q 1)
  - i.e.  $d \cdot e \equiv 1 \mod (p 1)(q 1)$
- Public key pk = (e, n)
- Secret key sk = (d, n)

### Encoding

- Partition message in block sizes of 2k bits
- Interprete block M as number  $0 \le M$ <  $2^{2k}$
- Code: P(M) = M<sup>e</sup> mod n
- Decoding
  - S(C) = C<sup>d</sup> mod n
- Correctness follow from the little theorem of Fermat

### **Digital Signatures**

### Digital Signatures

- signer has a secret key sk
- document will be signed with the secret key
- and can be verified with a public key pk
- public key is known to all

- Example of a signature scheme
  - m: message
  - Signer
    - computes **h(text)** with cryptographic hash function **h**
    - and publishes m and signature = g (sk, h (text)),
       g is the decryption function
  - Checker
    - computes h(text)
    - and verifies
      f (pk, signature) = h (text)
      for the asymmetric encryption
      function f

# **Problem of Byzantine Generals**

- After the hijacking of a node in a network it can cause malicious actions on the network
  - This problem is known as the Byzantine Generals problem
- 3 armies are ready to conquer the enemy castle
  - These are separated and communicate via messengers
  - If only army attacks then all will loose
  - If two armies atteck, they will win
  - If no army attacks, they will win
    - (because the defenders will starve out)
- But one general is an evil traitor
  - you do not know who ...



# **Problem of Byzantine Generals**

#### The traitorous general X tries to

- persuade A to attack
- persuade Be to wait
- A tells B about the command
- B tells A about the command
  - Something is wrong
  - But nobody can tell who is cheating
    - Even after further communication



## **Byzantine Agreement**

#### Theorem

- The problem of the three Byzantine generals cannot be solved\*
- For four generals, the problem is solvable

\* if all participants have no computing limitations



# **Byzantine Agreement**

- For four generals, the problem is solvable:
  - 1 general, 3 officers problem
  - consider a (loyal) general and three officers.
  - Disseminate information to all officers of the loyal generals
- Algorithm
  - General A sends his command to all others
    - A follows his own command
  - Any other office sends that its received order to all others
  - Each officer calculates the majority decision of the orders of B, .., D



### Byzantine Agreement What if General A is a Traitor

- For four generals, the problem is solvable:
  - 1 general, 3 officers problem
  - consider a (loyal) general and three officers.
  - Disseminate information to all officers of the loyal generals
- Algorithm
  - General A sends his command to all others
    - A follows his own command
  - Any other office sends that its received order to all others
  - Each officer calculates the majority decision of the orders of B, .., D



### Solution of the Byzantine General Problem

#### Theorem

- If m generals are traitors, then at least 2m +1 generals must be honest such that the problem of the Byzantine Generals is solvable.
- This barrier is tight if we do not allow cryptography
  - i.e. if you have powerful computers which can break into every encryption
- Theorem
  - If a digital signature scheme is available, then any number of false generals can be dealt with

### Solution:

- Every general signs his commands
- In each round every general forwards all commands and signatures to all others
- Each inconsistent command or false forwarding can be immediately detected and proved
- False silence or changed commands can be detected



# Algorithms for Radio Networks

Public Key Cryptography and Byzantine Generals Problems

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer



Samstag, 11. Februar 12