Exercise for the lecture

Computational Complexity

Winter 2014/15
Sheet 4

EXERCISE 1:

Consider the following functions $\mathbf{M X}_{n}:\{0,1\}^{n} \times\{0,1\}^{k} \rightarrow\{0,1\}$ for $n=2^{k}$ with

$$
\operatorname{MX}\left(x_{0 \ldots 00}, x_{0 \ldots 01}, \ldots, x_{1 \ldots 1}, i_{0}, \ldots, i_{k-1}\right):=x_{i_{0}, \ldots, i_{k-1}}
$$

and the function $\operatorname{STORE}_{n}:\{0,1\}^{n} \times\{0,1\}^{k} \times\{0,1\} \rightarrow\{0,1\}^{n}$ for $n=2^{k}$ with

$$
\operatorname{STORE}\left(x_{0}, x_{1}, \ldots, x_{\operatorname{bin}(n)}, i_{0}, \ldots, i_{k-1}, y\right):=\left(x_{0}, x_{1}, \ldots, x_{\operatorname{bin}(i-1)}, y, x_{\operatorname{bin}(i+1)}, \ldots, x_{1 \ldots 1}\right) .
$$

Show that

1. Show that a Boolean circuit for MX_{n} can be constructed by a DTM with space $O(\log n)$.
2. Show the same for STORE_{n}.

EXERCISE 2:

Consider the monotone circuit value problem MCV:

$$
\mathrm{MCV}:=\left\{(C, x) \mid C \text { is a }\{0,1, \wedge, \vee\} \text {-circuit and } \operatorname{val}_{C}(x)=1\right\}
$$

Prove that MCV is \mathcal{P}-complete.
Hint: Consider the railway code, where a bit b is encoded by two bits (b, \bar{b}). Show that the negation can be presented by switching the positions and Or can be represented by a combination of Or and And.

EXERCISE 3:
A quantified Boolean formula is given by

$$
Y_{1} x_{1} Y_{2} x_{2} Y_{3} x_{3} \ldots Y_{n} x_{n} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for $\forall i \in\{1, \ldots, n\}: Y_{i} \in\{\exists, \forall\}, x_{i} \in\{0,1\}$ and a Boolean formula $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Now define

$$
\text { QBF }:=\{f \mid \text { quantified Boolean formula } f \text { with } f=1\} .
$$

Show that QBF is $\mathcal{P S P A C E}$-complete.

