

Distributed Storage Networks and Computer Forensics 6 File Systems

Christian Schindelhauer

University of Freiburg Technical Faculty Computer Networks and Telematics Winter Semester 2011/12

Literature

- Storage Virtualization, Technologies for Simplifying
 Data Storage and Management, Tom Clark, Addison-Wesley, 2005
- Numerous File System Manuals
- Wikipedia

Measuring Memory

- ▶ 1 Byte = 1 B = 8 Bit = 8b
- 1 kilobyte = 1 kB = 1000 Bytes
- ▶ 1 megabyte = 1 MB = 1000 kB = 10⁶ Bytes
- 1 gigabyte = 1 GB = 1000 MB= 10^9 Bytes
- 1 terabyte = $1 \text{ TB} = 1000 \text{ GB} = 10^{12} \text{ Bytes}$
- 1 petabyte = $1 PB = 1000 TB = 10^{15} Bytes$
- 1 exabyte = $1 \text{ EB} = 1000 \text{ PB} = 10^{18} \text{ Bytes}$
- 1 zettabyte = $1 ZB = 1000 EB = 10^{21} Bytes$
- 1 yottabyte = 1 YB = $1000 \text{ ZB} = 10^{24} \text{ Bytes}$

- ▶ 1 Byte = 1 B = 8 Bit = 8b
- 1 kibibyte = 1 kB = 1024 Bytes
- 1 mebibyte = 1 MiB = 1024 kiB = 1.04 10⁶ Byte
- ▶ 1 gibibyte = 1 GiB = 1024 MiB= 1.07 10⁹ Bytes
- 1 tebibyte = 1 TiB = 1024 GiB = $1.10 \ 10^{12}$ Bytes
- ▶ 1 pebibyte = 1 PiB = 1024 TiB = 1.12 10¹⁵ Bytes
- ▶ 1 exbibyte = 1 EiB = 1024 PiB = 1.15 10¹⁸ Bytes
- ▶ 1 zebibyte = 1 ZiB = 1024 EiB = 1.18 10²¹ Bytes
- ▶ 1 yobibyte = 1 YiB = 1024 ZiB = 1.21 10²⁴ Bytes

Important File Systems

Unix File Systems

- ext2 (Linux)
- ZFS (Solaris)
- Windows
 - FAT (File Allocation Table)
 - DOS, Windows 3, Windows 2000
 - NTFS (New Technology File System)
 - Windows 2000, Windows XP, Windows Vista
- Mac OS X
 - HFS+ (Hierarchical File System)

File Metadata

 Data of applications combined with metadata

Unix File System (Unix inode)

- File type and access permission
- Number of links to this file
- Owner ID number
- Group ID number
- Number of bytes in file
- Time stamp for last file access
- Time stamp for last file modification
- Time stamp for last inode modification
- Generation number
- Number of Extents (disk blocks with data)
- Version of inode
- List of disk blocks
- Disk device containing blocks

Distributed Storage Networks and Computer Forensics Winter 2011/12

Windows (NTFS File Attributes)

- Time stamp and link count
- Location of extended attributes beyond the current record
- File name (≤ 255 characters like Unix)
- Security descriptor for ownership/access rights
- File data
- Object ID for distributed link tracking
- Index root
- Index allocation
- Volume information
- Volume name
- HFS+
 - Color (3 Bits)
 - locked, custom icon, bundle, invisible, alias, system, stationery, inited, no INIT resources, shared, desktop
 - Access control list
 - plus Unix meta-data

File Naming

Unix File System (or HFS+)

- Forbidden: / <NULL>
- Discourage use of special characters like:
 * & % \$ | ^ \ ~
- Files should not start with "-"
- Windows (NTFS File Attributes)
 - Forbidden special characters:

/ \ : * ? " < > |

- File extensions crucial for usage: .exe, .com, .bat
- Problematic for file transfer

File Ownership, Rights, Locking

- Security feature to manage access
- Unix File System
 - user, group, all rights
 - read, write, execute
- Windows (NTFS File Attributes)
 - access restricted to a user or to a group
- File locking for concurrent write operations

File Size

Depends of File System

- 4 GiB (FAT16)
- 16 GB 2 TiB (ext2)
- 16 TiB (NTFS)
- 8 EiByte (HFS+)
- 16 EiByte (ZFS)

Maximums size of file systems

- FAT16: 2¹⁶ entries and 2¹⁶ clusters @ 512 Byte
- ext2: 10¹⁸ files, max. 16 TebiBytes (TiB)
- NTFS: 2³²-1 files, 256 TiB
- HFS+: 2³²-1 files, 8EiB
- ZFS: 2⁴⁸ files, 16 EiB

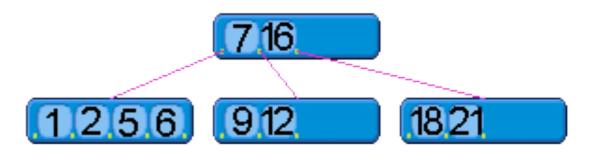
File System Hierarchy

- Starting from the root directory
- Tree with
 - directories as inner nodes
 - files as leafs
- In addition
 - hard links
 - symbolic links
 - devices within the structures

Tree Structures

- Files (and often directories) are organized with one or multiple
 - B-Trees or
 - B*-Trees
- Often multiple trees, e.g. HFS+ (all B*-trees)
 - Extent Overflow File (extra extents with allocation block allocated to which file)
 - Catalog File (records for all files and directories)
 - * indexed by ID (Catalog Node ID)
 - Attributes Files (for file attributes and metadata {forks})

B-Trees


Height-balanced trees

▶ (m/2,m)-B-Tree

- Every node has at most m children.
- Every node (except root and leaves) has at least m/2 children.
- The root has at least 2 children if it is not a leaf node.
- All leaves appear in the same level, and carry no information.
- A non-leaf node with k children contains k 1 keys

If a node

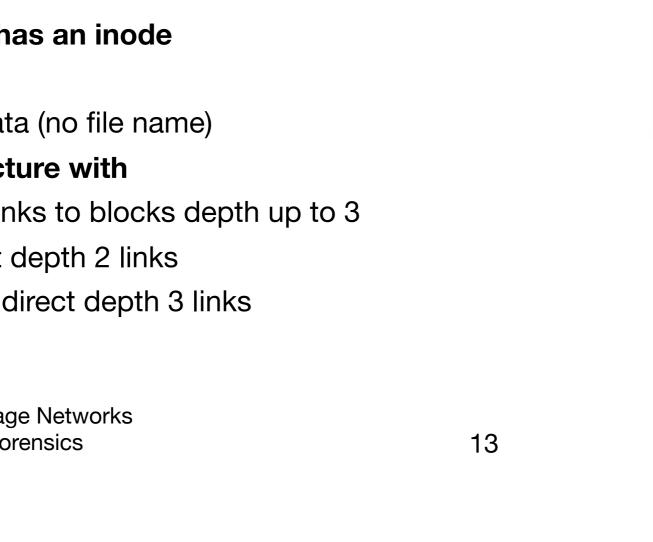
- is full it will be split at the next insertion
- is too empty it will be filled or merged with a neighbor node
- If the root node is full a new level will be inserted

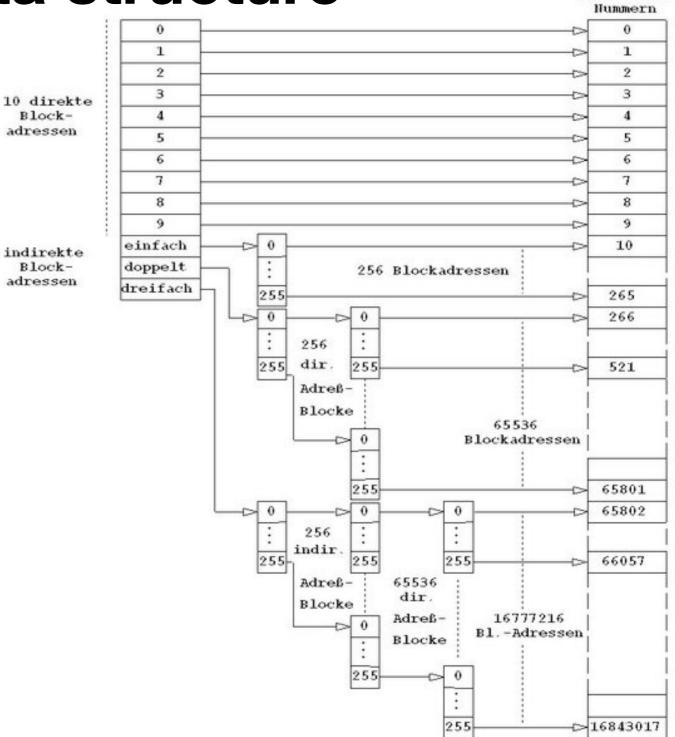
B*-Trees

- Height-balanced trees
- Like B-Trees
 - but information is stored in the leafs
 - inner nodes carry only keys
- B*-Tree
 - root has [2, 4m/3] children
 - all nodes (except the root) have [2/3 m-1, m] children
 - all inner nodes with k children have k-1 entries
 - all leaf nodes have the same depth

ext2 data structure

Block-


adressen


indirekte Block-

adressen

- Disk space is divided into blocks
- **Block groups form super-block**
 - like cylinder groups in UFS
 - superblock
 - blockgroup bitmap
 - inode bitmap
 - data blocks
- Each file has an inode
- Inode
 - metadata (no file name)
- Tree structure with
 - direct links to blocks depth up to 3
 - indirect depth 2 links
 - triple indirect depth 3 links

Distributed Storage Networks and Computer Forensics Winter 2011/12

http://de.wikipedia.org/wiki/Inode

Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Datenblock-

File System Consistency

- Special operation can validate and repair the file system consistency
 - e.g. chkdsk in Windows, fsck in Unix
 - risky and prone to data loss
- Journalling
 - journal logs all operations before they take place such they can be reversed
 - after some time the journal is closed and a new journal is opened
 - File system can be easily recovered after crashed
 - available in ext3, HFSJ ,...

Distributed Storage Networks and Computer Forensics 6 File Systems

Christian Schindelhauer

University of Freiburg Technical Faculty Computer Networks and Telematics Winter Semester 2011/12

