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The Uniform Problem

‣ Given 
• a dynamic set of n nodes V = {v1, ... , vn}
• data elements X = {x1, ..., xm}

‣ Find
• a mapping fV : X → V

‣ With the following properties 
• The mapping is simple 

- fV(x) be computed using V and x
- without the knowledge of X\{x} 

• Fairness:
- |fV-1(v)| ≈ |fV-1(w)|

• Monotony: Let V ⊂ W 
- For all v ∈ V: fV-1(v) ⊇ fW-1(v) 

‣ where  fV-1(v) := {x ∈ X : fV(x) = v }

Data Items X

Nodes: V

mapping f
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Distributed Hash Tables
THE Solution for the Uniform case

‣ “Consistent Hashing and Random Trees: 
Distributed Caching Protocols for Relieving Hot 
Spots on the World Wide Web”, 
• David Karger, Eric Lehman, Tom Leighton, 

Mathhew Levine, Daniel Lewin, Rina Panigrahy, 
STOC 1997

• Present a simple solution
‣ Distributed Hash Table

• Chooose a space M = [0,1[
• Map nodes v to M via hash function

- h : V → M
• Map documents and servers to an interval

- h : X → M
• Assign a document to the server which 

minimizes the distance in the interval
• fV(x) = argmin{v ∈V: (h(x)-h(v))mod 1}

- where x mod 1 := x - ⎣x⎦

Assignm
ent

Assignm
ent

A
ssignm

ent

Nodes: V

Data Items X

Hash Function

Hash Function
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The Performance of Distributed 
Hash Tables

‣ Theorem

• Data elements are mapped to node i  with probability pi = 1/|V|, if the 
hash functions behave like perfect random experiments

‣ Balls into bins problem
• Expected ratio max(pi)/min(pi) = Ω(log n)

‣ Solutions:
• Use O(log n) copies of a node 
– Principle of multiple choices

- check at some O(log n) positions and choose the largest empty 
interval for placing a node, 

– Cookoo-Hashing
- every node chooses among two possible position
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The Heterogeneous Case
‣ Given 

• a dynamic set of n nodes V = {v1, ... , vn}
• dynamic weights w : V → R+
• dynamic set of data elements X = {x1,...,xm}

‣ Find a mapping fw,V : X → V
‣ With the following properties 

• The mapping is simple 
- fw,V(x) be computed using V, x, w without the knowledge of X\{x} 

• Fairness: for all u,v  ∈ V:
- | fw,V-1(u)|/w(u) ≈ | fw,V-1(v)|/w(v) 

• Consistency: 
- Let V ⊂ W: For all v ∈ V: 

✴ fw,V-1(v) ⊇ fw,W-1(v)
- Let for all v ∈ V\{u}: w(v) = w’(v) and w’(u)>w(u):

✴ for all v ∈ V\{u}:  fw,V-1(v) ⊇ fw’,V-1(v)  and fw,V-1(u) ⊆ fw’,V-1(u) 
‣ where  fw,V-1(v) := { x ∈ X : fw,V(x) = v }

Data Items X

Nodes: V
Weights: w

mapping f
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Some Application Areas

‣ Proxy Caching
• Relieving hot spots in the Internet

‣ Mobile Ad Hoc Networks
• Relating ID and routing information 

‣ Peer-to-Peer Networks
• Finding the index data efficiently

‣ Storage Area Networks
• Distributing the data on a set of servers
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Application
Peer-to-Peer Networks

‣ Peer-to-Peer Network:
• decentralized overlay network delivering services over the Internet
• no client-server structure

- example: Gnutella
‣ Problem: Lookup in first generation networks very slow
‣ Solution:

• Use an efficient data structure for the links and
• map the keys to a hash space

‣ Examples:
– CAN 

- maps keys to a d-dimensional array 
- builds a toroidal connection network, 

✴ where each peer is assigned to rectangular areas
– Chord

- maps keys and peers to a ring via DHT
- establishes binary search like pointers on the ring
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Application
Storage Networks

‣ Distribute data over a set of hard disks (like RAID)
• Nodes = hard disks
• Data items = blocks

‣ Problem
• Place copies of blocks for redundancy
• If a hard disk fails other hard disk carry the information
• Add or remove hard disks without unnecessary data movement
• Hard disks may have different sizes

9
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Storage Network Architecture
‣ Avoid server based architectures

• Assignment of data is not flexible enough
• High local storage concentration (for LAN traffic 

reduction)
• Low availability of free capacity

‣ Basic SAN concept
• Combine all available disks into a single virtual one
• Server independent existence of storage
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Challenges in Storage 
Networks

‣ Heterogeneity
• hard disks typically differ in capacity and speed

‣ Popularity
• some data is popular and other not (e.g. movies, music :-)	
• their popularity rank varies over time

‣ Consistency
• system changes by adding or re-placing/moving
• preserving a fair share rate 
• only necessary data replacements must be done 

‣ Availability
• hard disks may fail, but data should not!

‣ Performance
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Traditional Virtualization in SAN
waterproof definitions
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Deterministic Uniform SAN 
Strategies

‣ DRAID
• distributed Cluster Network for uniform storage nodes
• uses RAID: striping/mirroring und Reed-Solomon encoding
• organized in matrix rows => scalability only in groups of columns size

‣ Good old stuff 
• RAID 0, I, IV, V, VI

(striping, mirroring,
XOR, distributed 
XOR, XOR + Reed-
Solomon)

‣ Problems: 
• scalability and availability is hard to combine
• Re-Striping (time is money), huge offset tables (lookup is expansive), 
• storage concatenation without load balancing (disks are remaining full) 
• Only storage nodes with uniform capacities are allowed
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The Heterogeneous Case
Ø Given 

– a dynamic set of n nodes V = {v1, ... , vn}
– dynamic weights w : V → R+

– dynamic set of data elements X = {x1,...,xm}
Ø Find a mapping fw,V : X → V
Ø With the following properties 

– The mapping is simple 
• fw,V(x) be computed using V, x, w
• without the knowledge of X\{x} 

– Fairness: for all u,v  ∈ V:
• | fw,V 

-1(u)|/w(u) ≈ | fw,V 
-1(v)|/w(v) 

– Consistency: 
• minimal replacements to preserve 

the data distribution
Ø where  fw,V

-1(v) := { x ∈ X : f w,V(x) = v }

s1

s2

sn

sn-1

D

S
fw,s : D → S
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The Naive Approach to DHT

Huge Share
 ~ 1000

Small
~ 0.1

Normal
~ 1
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SIEVE: Interval based 
consistent hashing

‣ Interval based approach
• Brinkmann, Salzwedel, and 

Scheideler, SPAA 2000
‣ Map nodes to random intervals (via 

hash function)
• interval length proportional to weight

‣ Map data items to random positions 
(via hash function)

‣ Two problems
• What to do if intervals overlap?
• What to do if the unions of intervals 

do not overlap the hash space M?

overlapempty

Huge Share
 ~ 1000

Small
~ 0.1

Normal
~ 1
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SIEVE: Interval based 
consistent hashing

1.What to do if intervals overlap?
– Uniformly choose random 

candidate from the overlapping 
intervals

2.What to do if the unions of intervals 
do not overlap the hash space M?

– Increase all intervals by a constant 
factor (stretch factor)

– Use O(log n) copies of all nodes
• resulting in O(n log n) intervals

Ø If more nodes appear
– then decrease all intervals by a 

constant factor
ØSIEVE is not providing monotony

– Re-stretching leads to unnecessary 
re-assignments

overlapempty

Huge Share
 ~ 1000

Small
~ 0.1

Normal
~ 1
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The Linear Method

‣ Alternative presentation of (uniform) 
Consistent Hashing

‣ After “randomly” placing nodes into M
• Add cones pointing to the node’s 

location in M
‣ Compute for each data element x the 

height of the cones
• Choose the cone with smallest height

‣ For the Linear Method
• Choose for each node i a cone 

stretched by the factor wi
‣ Compute for each data element x the 

height of the cones
• Choose the cone with smallest height
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The Linear Method: Basics
‣ For easier description we use half-cones, 

• the weighted distance is
- where x mod 1 := x - ⎣x⎦

‣ Analyzing heights is easier as analyzing interval lengths!
‣ Define:

• Consider one data element       and n randomly hashed nodes

r
s

Dw(r,s)

H(z)

19
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The Linear Method: Basics

r
s
Dw(r,s)

H(z)

ØProof:
– The probability of to receive 

height of at least h with respect 
to a node i is

1 - h wi

– Since	

h

20
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An Upper Bound for Fairness

Proof:
From Lemma 1 follows

We define

and the following term describes an upper bound

where

21
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An Upper Bound for Fairness 
(II)

Proof (continued):

22

Montag, 19. Dezember 11



Distributed Storage Networks
and Computer Forensics
Winter 2011/12

Computer Networks and Telematics
University of Freiburg

Christian Schindelhauer

The Limits of the Linear 
Method

Why does the biggest node win?
The small ones are competing against each other
The big one has no competitor in his league

The solution:
Use copies of each node	
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The Linear Method with Copies

ØA constant number of copies suffice to “repair” the linear function
ØThis theorem works only for one data item

–If many data items are inserted, then the original bias towards some nodes is 
reproduced:

• “Lucky” nodes receive more data items
ØSolution

–Independently repeat the game at least O(log n) times 
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Partitioning and the Linear 
Method

ØPartitions:
– Partition the hash range into sub-

intervals
– Map each data element into the 

whole interval
– Map for each node 2/ε+1 copies 

into each sub-interval
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The Logarithmic Method
‣ Replacing the linear function by 
‣ improves the accuracy
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Proof of Fact
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Probability that a Height is in an Interval
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Proof of Theorem 2

29

P

�

⇤Hi ⇥ h� � ⇤ Hi < h ⇤
⇧

j �=i

Hj ⇥ h

⇥

⌅ =

.
Proof: Hence, the probability that a data element receives height in the 

interval [h–δ, h[ and receives larger height than h for all other nodes 
is at most
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Proof of Theorem 2
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Proof of Theorem 2
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The Logarithmic Method
‣ Replacing the linear function with -ln((1-di(x)) mod 1 )/wi improves the 

accuracy of the probability distribution
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Further Features
‣ Efficient data structure for the linear and logarithmic method

• can be implemented within O(n) space
• Assigning elements can be done in O(log n) expected time
• Inserting/deleting new nodes can be done in amortized time O(1)

‣ Predicting Migration
• The height of a data element correlates with the probability that this data 

element is the next to migrate to a different server
‣ Fading in and out

• Since the consistency works also for the weights:
• Nodes can be inserted by slowly increasing the weight
• No additional overhead
• Node weight represents the transient download state
• Vice versa for leaving nodes
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Double Hashing
‣ If every node uses a different hashing, then the 

logarithmic method can be chose without any copies

‣ Advantage:
• Perfect probability distribution

‣ Disadvantage:
• Intrinsic linear time w.r.t. the number of servers

‣ This is the method of choice for Storage Area 
Networks

34
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The Logarithmic Method with 
Double Hashing

2nd hash-function
35
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‣ Given:
• S: set of servers with bandwidth b(s) and capacity |s| for each 

server s
• D: set of documents with size |d| and popularity p(d) for each 

document
‣ Find: Ad,s: Number of bytes of document d assigned to 

storage s
‣ Allocation using DHHT

• Use DHHT to split each document d into |S| sets of blocks 
according to weights Ad,s 

• Store blocks of all corresponding |D| subsets on server s

Distributed Storage Networks
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Winter 2011/12

Computer Networks and Telematics
University of Freiburg
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Allocation Problem in Storage 
Networks

36
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‣ Ad,s: Number of bytes of document d assigned to storage s
‣ Distributed Algorithm:

• Use DHHT to split each document into |S| parts
• Store corresponding blocks on the server

‣ Can be also achieved by a centralized algorithm
‣ Straight forward generalization of fair balance

• Distribute data according to a (m x n) distribution matrix A where
  and

‣ DHHT 
• assigns                         elements of d ∈ D to s ∈ S

• Information needed: File-IDs, Server-IDs, and matrix A 
• If matrix A changes to A´

data reassignments are needed 
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€ 

∀s : Ad , s
d∑ ≤| s |  

€ 

∀d : Ad , s
s∑ =| d |  

€ 

Ad , s(1± ε)

€ 

(1+ ε) Ad , s− A' d , s
d ,s∑

The Problem in SAN
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‣ A fair balance like                               is not always the 
best to do

‣ Servers are different in capacity and bandwidth 
‣ Documents are different in size and popularity

‣ Goal: Optimize Time

‣ Assumption
• All sizes can be modeled as real numbers 
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€ 

Ad , s =| d | ⋅ | s |
| s' |
s'∈S∑

How to Balance
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‣ b(s) = bandwidth of server s
• b(s) = number of bytes per second

‣ p(d) = popularity of document d
• p(d) = number of read/write accesses

‣ Sequential time for a document d and an assignment A

‣ Parallel time for a document d and an assignment A

‣ Observation
• Popular bytes cause more traffic than less popular once
• Costs are defined by the traffic per byte
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€ 

SeqTimeA(d) := Ad , s

b(s)s∈S∑

€ 

ParTimeA(d) :=  maxs ∈ S
Ad, s

b(s)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Which Time ?
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Sequential Time
‣ Sequential time

• load all parts of a document from all servers sequentially

‣ Worst case sequential time
 WSeqTime := maxd {SeqTimeA(d)}

‣ Average sequential time
 AvSeqTime :=                SeqTimeA(d)

‣ where
• S: set of servers with bandwidth b(s) and capacity |s| for each server s
• D: set of documents with size |d| and popularity p(d) for each document
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Parallel Time
‣ Parallel time

• load all parts of a document from all servers simultaneously

‣ Worst case parallel time
 WParTime := maxd {ParTimeA(d)}

‣ Average parallel time
 AvParTime :=                ParTimeA(d)

‣ where
• S: set of servers with bandwidth b(s) and capacity |s| for each server s
• D: set of documents with size |d| and popularity p(d) for each document
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Sequential Bandwidth
‣ Sequential time

• load all parts of a document from all servers sequentially

‣ Sequential bandwidth
• download speed of a document d

‣ Worst case sequential bandwidth
 WBandwidth := mind {SeqBandwidthA(d)}

‣ Average sequential bandwidth
 AvBandwidth :=                SeqBandwidth(d)

‣ where
• S: set of servers with bandwidth b(s) and capacity |s| for each server s
• D: set of documents with size |d| and popularity p(d) for each document
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Parallel Bandwidth
‣ Parallel time

• load all parts of a document from all servers in parallel

‣ Parallel bandwidth
• download speed of a datum d

‣ Worst case parallel bandwidth
 WParBandwidth := mind {ParBandwidthA(d)}

‣ Average parallel bandwidth time
 AvParBandwidth:=                ParBandwidthA(d)

‣ where
• S: set of servers with bandwidth b(s) and capacity |s| for each server s
• D: set of documents with size |d| and popularity p(d) for each document
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Most Reasonable Time 
Measures

‣ Minimize the expected sequential time based on 
popularity of the document:

‣ Minimize the expected parallel time based on the 
popularity of the document

44
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How to Describe AvParTime as a LP

45

AvParTime

Additional 
Restraints {
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Solution by Linear Program

46

€ 

∀s : Ad , s
d∑ ≤| s |  

€ 

∀d : Ad , s
s∑ =| d |  
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Example‣ Storage device
• s1: 500 GB, 100 MB/s
• s2: 100 GB, 50 MB/s
• s3: 1 GB 1000 MB/s

‣ Documents
• d1: 100 GB, popularity 1/111
• d2:  5 GB, popularity 100/111 
• d3: 100 GB, popularity 10/111

47

Ad,s s1 s2 s3 Σ

d1 100 0 0 100

d2 2 2 1 5

d3 2 98 0 100

Σ ≤ 500 ≤ 100 ≤ 1

SeqTime SeqBand
width ParTime ParBand

width

d1 1000 100 1000 100

d2 61 82 40 125

d3 1980 51 1960 51

Av 242 79 222 118

Worst 
case 1980 51 1960 51
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Excursion: Linear Programming

‣ Linear Program (Linear Optimization)
‣ Given: m × n matrix A

	 m-dimensional vector b
	 n-dimensional vector c

‣ Find: n-dimensional vector x=(x1, ..., xn)
‣ such that 

• x ≥ 0, i.e. for all j: xj ≥ 0
• A x = b, i. e. 

• z = cT x is minimized, i.e.                    is minimal 

48

n�

j=1

m�

i=1

Aijxj = bj

.

z =
n�

j=1

cjxj

.
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Linear Programming 2

‣ Linear Programming (LP2) 
‣ Given: m × n matrix A

	 m-dimensional vector b
	 n-dimensional vector c

‣ Find: n-dimensional vector x=(x1, ..., xn)
‣ such that 

• x ≥ 0
• A x ≤ b 
• z = cT x is maximal
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LP = LP2

‣ Lemma
• LP can be reformulated as an LP2 and vice versa.
• The problem size increases only by a constant factor.

‣ Proof:

50

Montag, 19. Dezember 11



Distributed Storage Networks
and Computer Forensics
Winter 2011/12

Computer Networks and Telematics
University of Freiburg

Christian Schindelhauer

Geometric Interpretation

‣ Example:
• A x = b
• with

• Minimize for x≥0 the term cTx where 

51

A =
�

1 �1 0
3 1 1

⇥

b =
�

1
9

⇥

x =

�

⇤
x1

x2

x3

⇥

⌅

cT = (0 0 � 1)

.
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Simplex Algorithm

‣ All solutions are in an intersection
• of hyper-planes (A x = b)
• and half-planes x≥0

‣ This is a simplex
‣ First construct a basis solution x on the 

vertices of the simplex 
• xi is called a basis variable
• which suffices Ax=b and x≥0
• but is not optimal

- if xi=0 it is called degenerated
‣ Consider all edges of the simplex

• walk along the edge which improves the 
solution

• until the next the next vertex
• Choose it as new basis solution

‣ Repeat until the optimum has been reached

52
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Intuition for the Simplex-Algorithm
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Computing the Parallel Vectors

54
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2D Example
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The Solution is in Sight
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c gives the direction

57

too many edge in 
high dimensions
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Simplex 
Algorithm

58

.
Simplex Algorithm
input: m⇥ n-matrix A,

m-dim. vector b
n-dim. vector c

{ IB ⇧ a set {j1, . . . , jm} of m positions with
independent column vectors in A

B ⇧ (aj1 , . . . , ajm)
x ⇧ B�1b
stop ⇧ false
while ¬stop do

{ cB ⇧ (cj1 , . . . , cjm)
for all j ⌥⌃ IB do cj ⇧ cj � cBB�1aj

optimal ⇧
�

j ⌅⇤IB
cj ⌅ 0

stop ⇧ optimal
if ¬stop then

{ V ⇧ {j ⌥⌃ IB | cj < 0}
q ⇧ arbitrary element from V
w ⇧ B�1aq

stop ⇧ (w ⇤ 0)
if ¬stop then

{ Determine jp such that xjp

wp
= min1⇥i⇥m{xji

wi
| wi ⌅ 0}

s ⇧ xjp

wp

xq ⇧ s
for all i ⌃ {1, . . . m} do xji ⇧ xji � swi

B ⇧ replace column q by column jp.
IB ⇧ (IB \ {q})  {jp}
jp ⇧ q

}

}

}
if optimal then return x

else return no lower bound
}
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Performance

‣ Worst case time behavior of the Simplex algorithm is 
exponential
• A simplex can have an exponential number of edges

‣ For randomized inputs, the running time of Simplex is 
polynomial on the expectation

‣ The Ellipsoid algorithm is a different method with 
polynomial worst case behavior
• In practice it is usually outperformed by the Simplex 

algorithm
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ParTime = SeqTime with virtual 
servers

ØReduce optimal solution for LP of ParTime 
to the optimal solution of LP of SeqTime

– Combining capacity of many disks in 
parallel

ØDefine new sequential virtual servers 
s’1 , ..., s’m 

– Sort si such that

– Server s’j parallelizes servers sj,..,s|S|

– Virtual servers  s’i are then sorted such 
that b(s’i)>b(s’i+1)

– Size of s’i:

60

tj =
|sj |
b(sj)

�
j�1�

i=1

ti

.
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Solve the LP of AvSeqTime

‣ Simple optimal greedy solution

‣ Repeat until all documents are 
assinged:
• Assign most popular document on 

fastest sequential (virtual) server
• Reduce the storage of the server by 

the document size and remove the 
document
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Applications in SAN

‣ Object storage with different 
popularity zones
• e.g. movies with varying popularities 

over time
• Fragmentation is done automatically
• Includes dynamics for adding and 

removing documents
• The same for servers

‣ Use different bandwidth
• Each disk has different bandwidths 
• Exporting different zone classes as 

sequential servers
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From DHT to DHHT
‣ Distributed Heterogeneous Hash Table (DHHT)

• a straight-forward extension of the original DHT
• efficient, fair

‣ Linear Method
• Nice pictures
• Performs quite well
• Needs copies for fairness, and O(log n) 

partitions
‣ Logarithmic Method

• Performs perfectly
• Needs O(log n) partitions if more than one data 

item is used
• is optimal when combined with double hashing

‣ Applications of DHHT
• MANET, Peer-to-Peer-Networks 
• SAN: optimize time with very simple assignment 

rules
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