

Distributed Storage Networks and Computer Forensics 9 Distributed Heterogeneous Hash Tables

Christian Schindelhauer

University of Freiburg Technical Faculty Computer Networks and Telematics Winter Semester 2011/12

Montag, 19. Dezember 11

Literature

- André Brinkmann, Kay Salzwedel, Christian Scheideler, Compact, Adaptive Placement Schemes for Non-Uniform Capacities, 14th ACM Symposium on Parallelism in Algorithms and Architectures 2002 (SPAA 2002)
- Christian Schindelhauer, Gunnar Schomaker, Weighted Distributed Hash Tables, 17th ACM Symposium on Parallelism in Algorithms and Architectures 2005 (SPAA 2005)
- Christian Schindelhauer, Gunnar Schomaker, SAN Optimal Multi Parameter Access Scheme, ICN 2006, International Conference on Networking, Mauritius, April 23-26, 2006

The Uniform Problem

• Given

- a dynamic set of n nodes $V = \{v_1, \, \ldots \, , \, v_n\}$
- data elements $X = \{x_1, ..., x_m\}$
- Find
 - a mapping $f_V : X \rightarrow V$

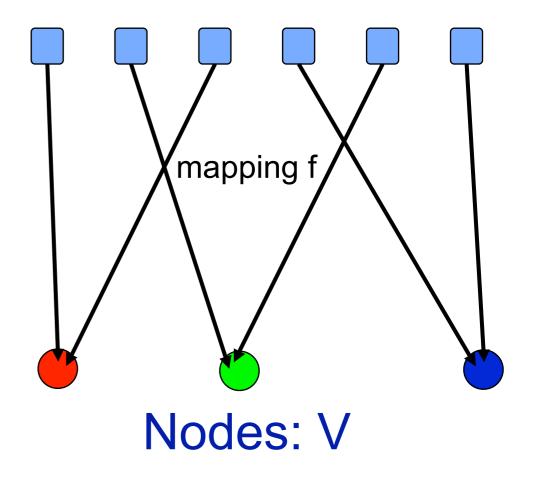
With the following properties

- The mapping is simple
 - $f_V(x)$ be computed using V and x
 - without the knowledge of $X \{x\}$
- Fairness:
 - $|f_{V}^{-1}(v)| \approx |f_{V}^{-1}(w)|$
- Monotony: Let $V \subset W$
 - For all $v \in V$: $f_{V}^{-1}(v) \supseteq f_{W}^{-1}(v)$

$\bullet \ \text{ where } \ f_V^{-1}(v) := \{x \in X : f_V(x) = v \}$

Distributed Storage Networks and Computer Forensics Winter 2011/12

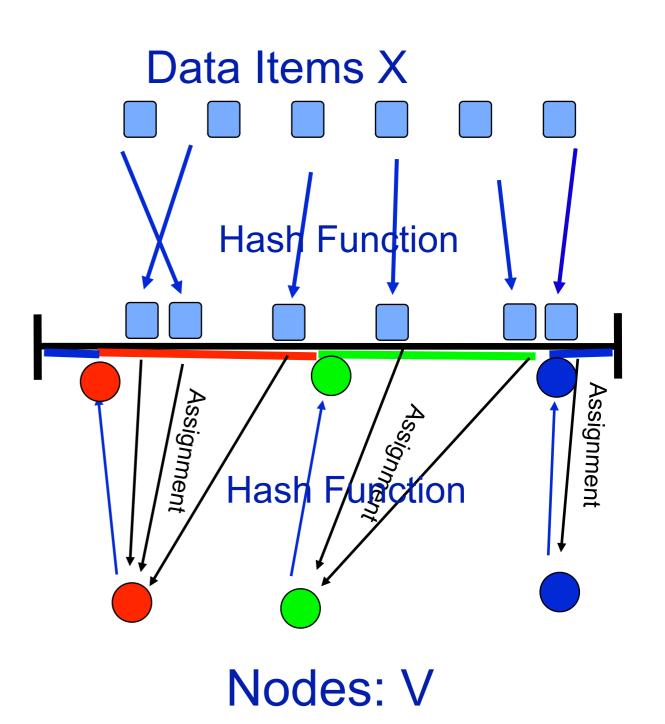
Data Items X



Distributed Hash Tables THE Solution for the Uniform case

- "Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web",
 - David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, Rina Panigrahy, STOC 1997
 - Present a simple solution
- Distributed Hash Table
 - Chooose a space M = [0,1[
 - Map nodes v to M via hash function
 - $h: V \rightarrow M$
 - Map documents and servers to an interval
 - $h: X \rightarrow M$
 - Assign a document to the server which minimizes the distance in the interval
 - $f_V(x) = argmin\{v \in V: (h(x)-h(v))mod 1\}$
 - where x mod 1 := x $\lfloor x \rfloor$

Distributed Storage Networks and Computer Forensics Winter 2011/12



The Performance of Distributed Hash Tables

• Theorem

• Data elements are mapped to node i with probability $p_i = 1/|V|$, if the hash functions behave like perfect random experiments

Balls into bins problem

- Expected ratio $max(p_i)/min(p_i) = \Omega(\log n)$
- Solutions:
 - Use O(log n) copies of a node
 - Principle of multiple choices
 - check at some O(log n) positions and choose the largest empty interval for placing a node,

- Cookoo-Hashing

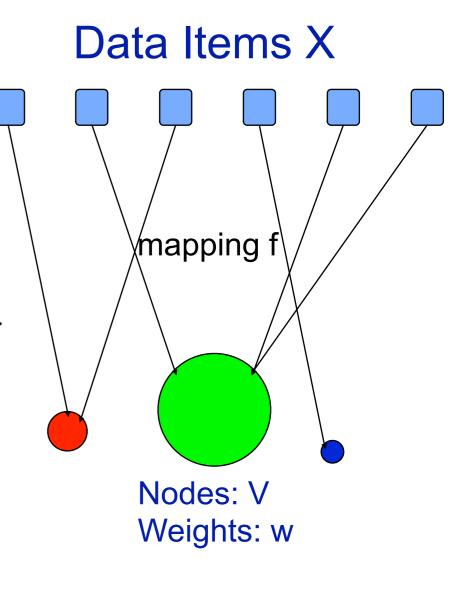
- every node chooses among two possible position

The Heterogeneous Case

Given

- a dynamic set of n nodes $V = \{v_1, \, ... \, , \, v_n\}$
- dynamic weights w : V \rightarrow R+
- dynamic set of data elements X = {x₁,...,x_m}
- Find a mapping $f_{w,V} : X \rightarrow V$
- With the following properties
 - The mapping is simple
 - $f_{w,V}(x)$ be computed using V, x, w without the knowledge of X\{x}
 - Fairness: for all $u, v \in V$:
 - $|f_{w,v^{-1}}(u)|/w(u) \approx |f_{w,v^{-1}}(v)|/w(v)$
 - Consistency:
 - Let $V \subset W$: For all $v \in V$:
 - * $f_{w,V}^{-1}(v) \supseteq f_{w,W}^{-1}(v)$
 - Let for all $v \in V \setminus \{u\}$: w(v) = w'(v) and w'(u)>w(u):
 - * for all $v \in V \setminus \{u\}$: $f_{w,V^{-1}}(v) \supseteq f_{w',V^{-1}}(v)$ and $f_{w,V^{-1}}(u) \subseteq f_{w',V^{-1}}(u)$
- ▶ where $f_{w,v}^{-1}(v) := \{ x \in X : f_{w,v}(x) = v \}$

Distributed Storage Networks and Computer Forensics Winter 2011/12



Some Application Areas

Proxy Caching

• Relieving hot spots in the Internet

Mobile Ad Hoc Networks

• Relating ID and routing information

Peer-to-Peer Networks

• Finding the index data efficiently

Storage Area Networks

Distributing the data on a set of servers

Application Peer-to-Peer Networks

Peer-to-Peer Network:

- decentralized overlay network delivering services over the Internet
- no client-server structure
 - example: Gnutella
- Problem: Lookup in first generation networks very slow

Solution:

- Use an efficient data structure for the links and
- map the keys to a hash space
- Examples:
 - -CAN
 - maps keys to a d-dimensional array
 - builds a toroidal connection network,
 - * where each peer is assigned to rectangular areas
 - -Chord
 - maps keys and peers to a ring via **DHT**
 - establishes binary search like pointers on the ring

Application Storage Networks

- Distribute data over a set of hard disks (like RAID)
 - Nodes = hard disks
 - Data items = blocks
- Problem
 - Place copies of blocks for redundancy
 - If a hard disk fails other hard disk carry the information
 - Add or remove hard disks without unnecessary data movement
 - Hard disks may have different sizes

Storage Network Architecture

Avoid server based architectures

- Assignment of data is not flexible enough
- High local storage concentration (for LAN traffic reduction)
- Low availability of free capacity
- Basic SAN concept
 - Combine all available disks into a single virtual one
 - Server independent existence of storage

Distributed Storage Networks and Computer Forensics Winter 2011/12

Challenges in Storage Networks

Heterogeneity

• hard disks typically differ in capacity and speed

Popularity

- some data is popular and other not (e.g. movies, music :-)
- their popularity rank varies over time
- Consistency
 - system changes by adding or re-placing/moving
 - preserving a fair share rate
 - only necessary data replacements must be done
- Availability
 - hard disks may fail, but data should not!
- Performance

Traditional Virtualization in SAN

waterproof definitions

12

Standalone

Cluster

RAID 1 Distributed Storage Networks and Computer Forensics Winter 2011/12

RAID 5

Hot swap

RAID 0

RAID 0+1

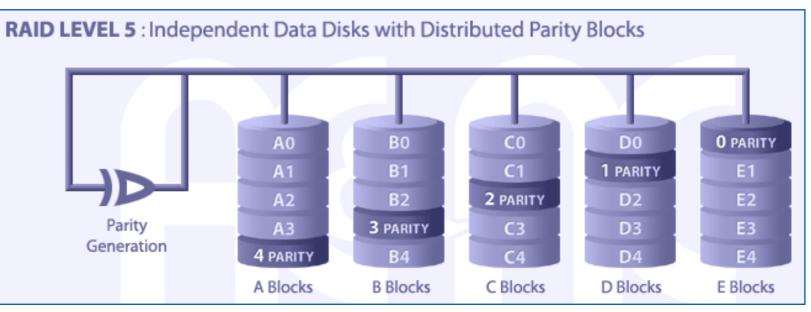
Deterministic Uniform SAN Strategies

DRAID

- distributed Cluster Network for uniform storage nodes
- uses RAID: striping/mirroring und Reed-Solomon encoding
- organized in matrix rows => scalability only in groups of columns size

Good old stuff

 RAID 0, I, IV, V, VI (striping, mirroring, XOR, distributed XOR, XOR + Reed-Solomon)



Problems:

- scalability and availability is hard to combine
- Re-Striping (time is money), huge offset tables (lookup is expansive),
- storage concatenation without load balancing (disks are remaining full)
- Only storage nodes with uniform capacities are allowed

Distributed Storage Networks and Computer Forensics Winter 2011/12

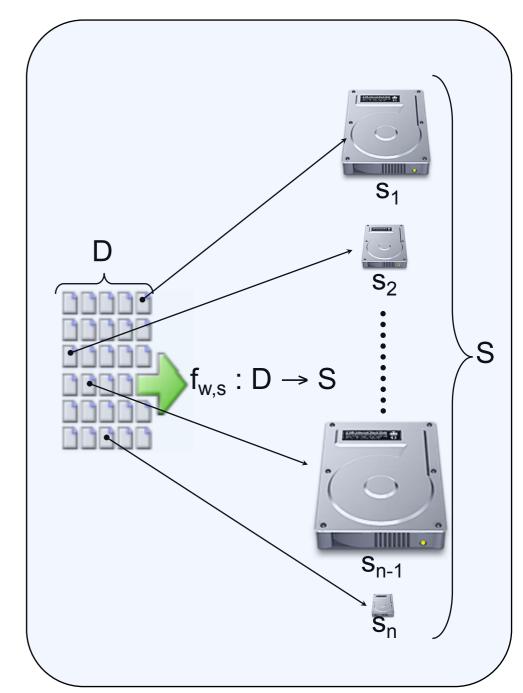
The Heterogeneous Case

Given

- a dynamic set of n nodes $V = \{v_1, \dots, v_n\}$
- dynamic weights w : V \rightarrow R⁺
- dynamic set of data elements $X = \{x_1, ..., x_m\}$
- > Find a mapping $f_{w,V} : X \rightarrow V$
- With the following properties
 - The mapping is **simple**
 - $f_{w,V}(x)$ be computed using V, x, w
 - without the knowledge of X\{x}
 - **Fairness**: for all $u, v \in V$:
 - $| f_{w,V}^{-1}(u) | / w(u) \approx | f_{w,V}^{-1}(v) | / w(v)$
 - Consistency:
 - minimal replacements to preserve the data distribution

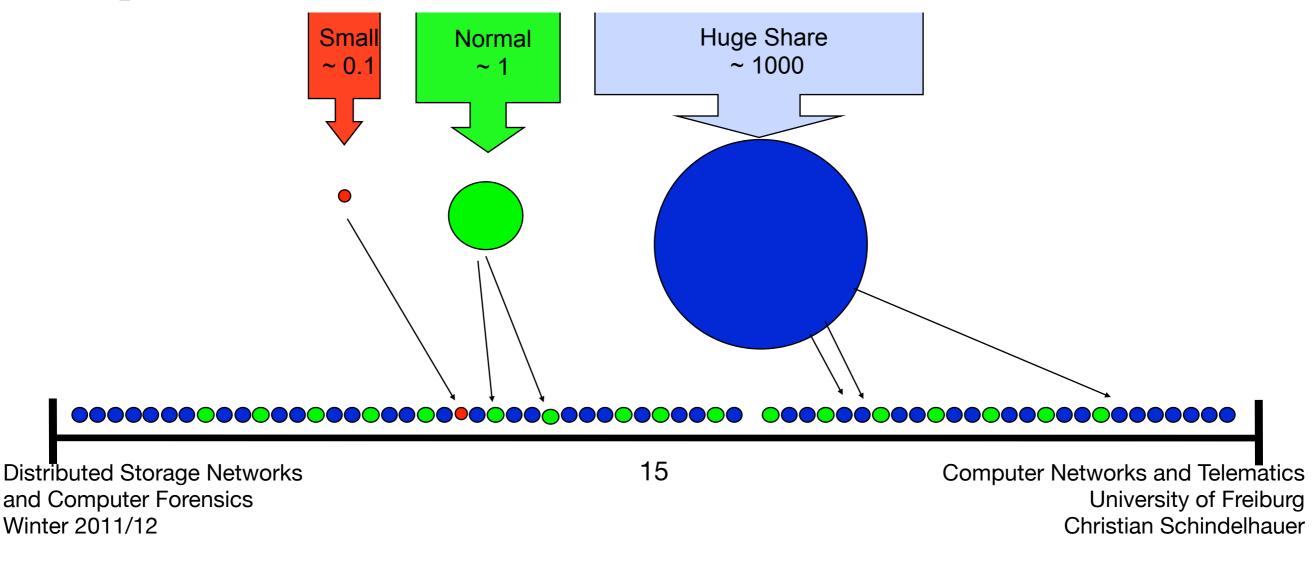
> where $f_{w,v}^{-1}(v) := \{ x \in X : f_{w,v}(x) = v \}$

Distributed Storage Networks and Computer Forensics Winter 2011/12



The Naive Approach to DHT

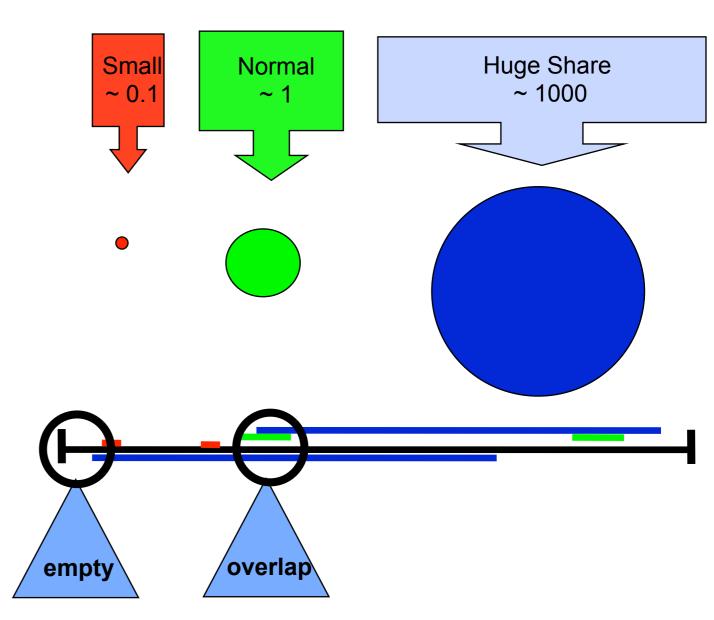
- Use $\left\lceil \frac{w_i}{\min_{j \in V} \{w_j\}} \right\rceil$ copies for each node w_i
- This is not feasible, if $\max_{j \in V} \{w_j\} / \min_{j \in V} \{w_j\}$ is too large
- Furthermore, inserting nodes with small weights increases the number of copies of all nodes.



SIEVE: Interval based consistent hashing

Interval based approach

- Brinkmann, Salzwedel, and Scheideler, SPAA 2000
- Map nodes to random intervals (via hash function)
 - interval length proportional to weight
- Map data items to random positions (via hash function)
- Two problems
 - What to do if intervals overlap?
 - What to do if the unions of intervals do not overlap the hash space M?



Computer Networks and Telematics University of Freiburg Christian Schindelhauer

SIEVE: Interval based consistent hashing

1. What to do if intervals overlap?

 Uniformly choose random candidate from the overlapping intervals

2. What to do if the unions of intervals do not overlap the hash space M?

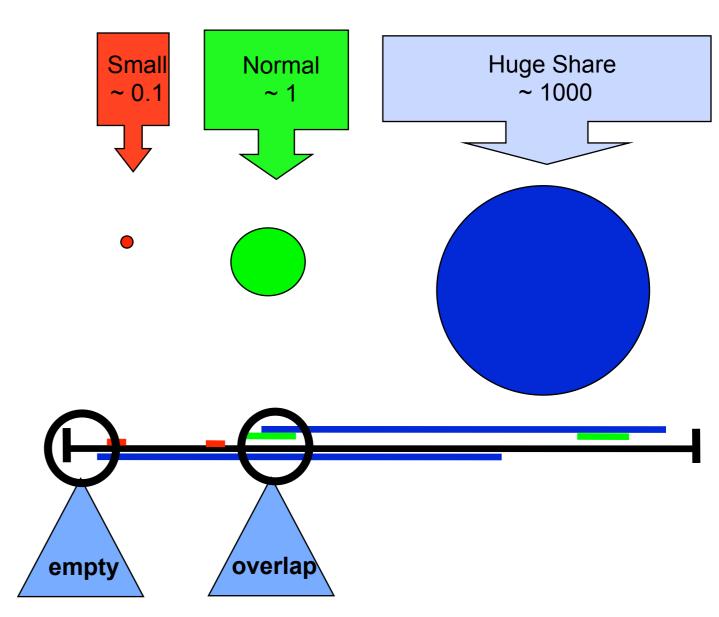
- Increase all intervals by a constant factor (stretch factor)
- Use O(log n) copies of all nodes
 - resulting in O(n log n) intervals

If more nodes appear

 then decrease all intervals by a constant factor

SIEVE is not providing monotony

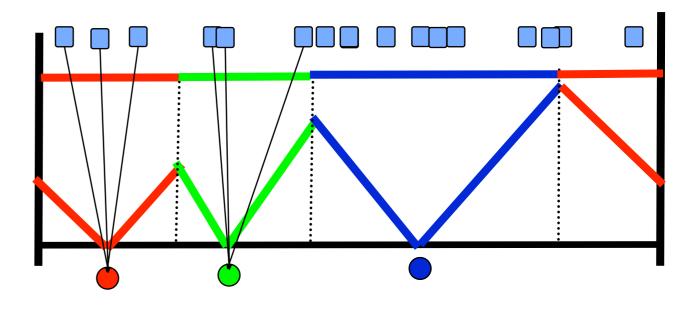
 Re-stretching leads to unnecessary re-assignments

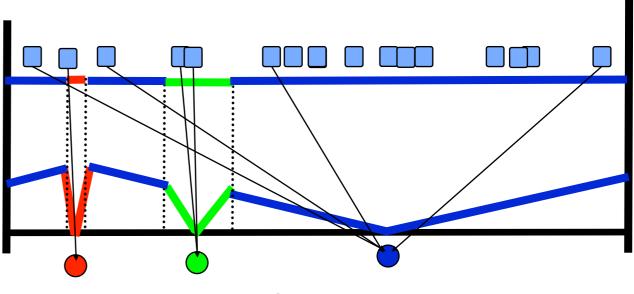


Computer Networks and Telematics University of Freiburg Christian Schindelhauer

The Linear Method

- Alternative presentation of (uniform)
 Consistent Hashing
- After "randomly" placing nodes into M
 - Add cones pointing to the node's location in M
- Compute for each data element x the height of the cones
 - Choose the cone with smallest height
- For the Linear Method
 - Choose for each node i a cone stretched by the factor wi
- Compute for each data element x the height of the cones
 - Choose the cone with smallest height

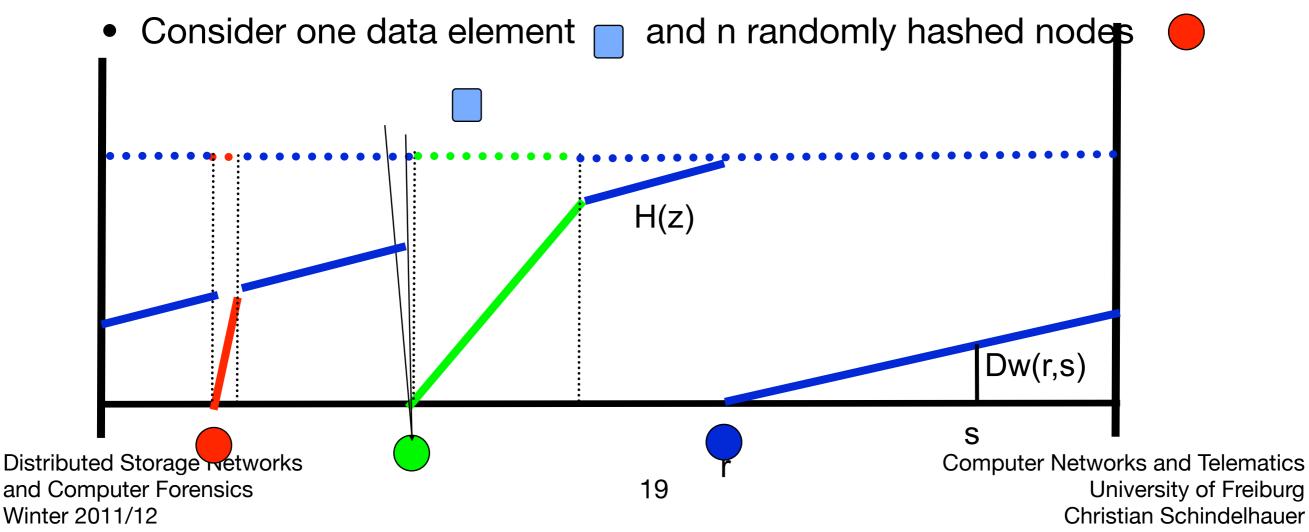




Computer Networks and Telematics University of Freiburg Christian Schindelhauer

The Linear Method: Basics

- For easier description we use half-cones,
 - the weighted distance is $D_w(r,s) := \frac{((s-r) \mod 1)}{w}$
 - where x mod 1 := x $\lfloor x \rfloor$
- Analyzing heights is easier as analyzing interval lengths!
- Define: $H(z) := \min_{u \in V} D_{w_u}(z, s_u)$



The Linear Method: Basics

LEMMA 1. Given n nodes with weights w_1, \ldots, w_n . Then the height H(r) assigned to a position r in M is distributed as follows:

$$P[H(r) > h] = \begin{cases} \prod_{i \in [n]} (1 - hw_i), & \text{if } h \le \min_i \{\frac{1}{w_i}\} \\ 0, & \text{else} \end{cases}$$

≻Proof:

 The probability of to receive height of at least h with respect to a node i is

1 - h w_i

- Since

$$\mathbf{P}[H_i \le h] = \begin{cases} 1, & h \ge \frac{1}{w_i} \\ h \cdot w_i & \text{else.} \end{cases}$$

Distributed Storage Networks and Computer Forensics Winter 2011/12

$$H(z) := \min_{u \in V} D_{w_u}(z, s_u)$$

$$H(z)$$

$$H(z)$$

$$D_w(r, s_u)$$

An Upper Bound for Fairness

THEOREM 1. The Linear Method stores with probability of at most $\frac{w_i}{W-w_i}$ a data element at a node *i*, where $W := \sum_{i=1}^{|V|} w_i$.

Proof:

From Lemma 1 follows $P[H_i \in [h, h+\delta] \land \forall j \neq i : H_j > h] = \begin{cases} 0, & \exists j : h \ge \frac{1}{w_j} \\ \delta w_i \prod_{j \neq i} (1-hw_j) & \text{else}. \end{cases}$

We define $P_{i,h,\delta} := \delta w_i \prod_{j \neq i} (1 - h w_j)$

and the following term describes an upper bound

$$\sum_{m=1}^{\infty} P_{i,\delta m,\delta}$$
 where $h = m\delta$

Distributed Storage Networks and Computer Forensics Winter 2011/12

An Upper Bound for Fairness (II)

THEOREM 1. The Linear Method stores with probability of at most $\frac{w_i}{W-w_i}$ a data element at a node *i*, where $W := \sum_{i=1}^{|V|} w_i$.

Proof (continued):

$$\lim_{\delta \to 0} \sum_{m=1}^{\infty} P_{i,\delta m,\delta} \leq \lim_{\delta \to 0} \sum_{m=1}^{\infty} w_i \delta e^{-a\delta m}$$
$$= \int_{x=0}^{\infty} w_i e^{-ax} dx = \frac{w_i}{a}$$
$$= \frac{w_i}{\sum_{j \neq i} w_j}$$

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Montag, 19. Dezember 11

The Limits of the Linear Method

THEOREM 5. The Linear Method (without copies) for n nodes with weights $w_1 = 1$ and $w_2, \ldots, w_{n-1} = \frac{1}{n-1}$ assigns a data element with probability $1 - e^{-1} \approx 0.632$ to node 0 when n tends to infinity.

PROOF. We use Lemma 1 and reduce the probability to the following term.

$$\lim_{n \to \infty} \int_{x=0}^{1} x \left(1 - \frac{x}{n-1} \right)^{n-1} dx =$$

$$\int_{x=0}^{1} x e^{-x} dx = \left[-e^{-x}\right]_{0}^{1} = 1 - e^{-1}$$

Why does the biggest node win?

The small ones are competing against each other The big one has no competitor in his league **The solution:**

Use copies of each node Distributed Storage Networks and Computer Forensics Winter 2011/12

The Linear Method with Copies

THEOREM 2. Let $\epsilon > 0$. Then, the Linear Method using $\lceil \frac{2}{\epsilon} + 1 \rceil$ copies assigns one data element to node *i* with probability p_i where

$$(1 - \sqrt{\epsilon}) \cdot \frac{w_i}{W} \leq p_i \leq (1 + \epsilon) \cdot \frac{w_i}{W}$$

> A constant number of copies suffice to "repair" the linear function

This theorem works only for one data item

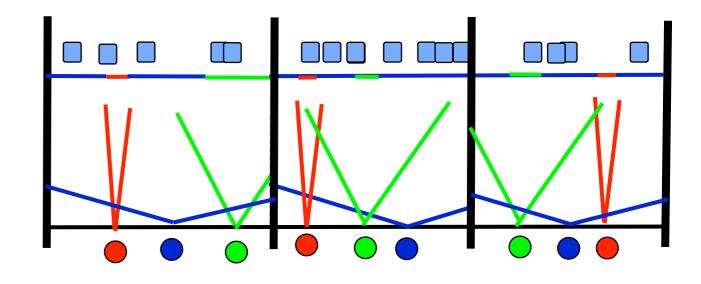
- –If many data items are inserted, then the original bias towards some nodes is reproduced:
 - "Lucky" nodes receive more data items
- Solution
 - -Independently repeat the game at least O(log n) times

Distributed Storage Networks and Computer Forensics Winter 2011/12

Partitioning and the Linear Method

≻Partitions:

- Partition the hash range into subintervals
- Map each data element into the whole interval
- Map for each node 2/ɛ+1 copies into each sub-interval

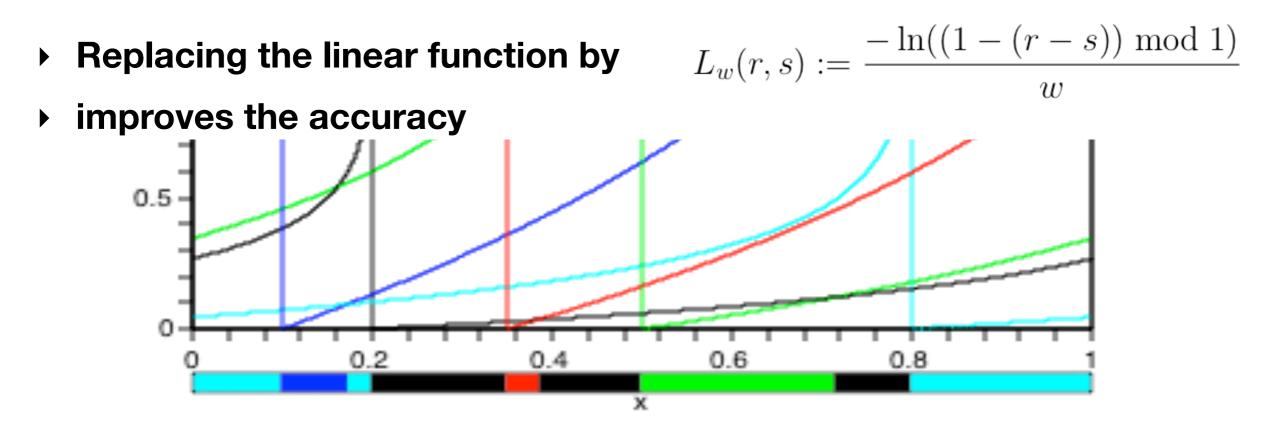


Theorem 3 For all $\epsilon, \epsilon' > 0$ and c > 0 there exists c' > 0 such that when we apply the Linear Method to n nodes using $\lceil \frac{2}{\epsilon} + 1 \rceil$ copies and $c' \log n$ partitions, the following holds with high probability, i.e. $1 - n^{-c}$. Every node $i \in V$ receives all data elements with probability p_i such that

$$(1 - \sqrt{\epsilon} - \epsilon') \cdot \frac{w_i}{W} \leq p_i \leq (1 + \epsilon + \epsilon') \cdot \frac{w_i}{W}.$$

Distributed Storage Networks and Computer Forensics Winter 2011/12

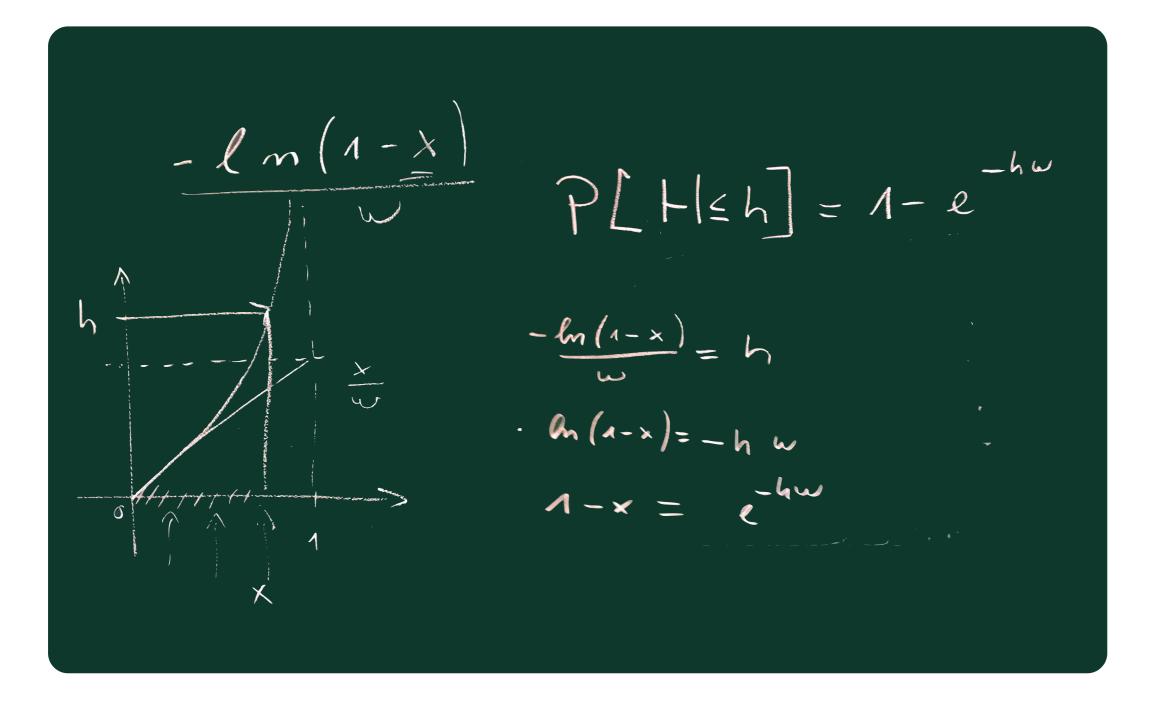
The Logarithmic Method



FACT 2. If in the Logarithmic Method (without copies and without partitions) a node arrives with weight w then the probability that data element x with previous height H_x is assigned to the new node is $1 - e^{-wH_x}$.

THEOREM 6. Given n nodes with positive weights w_1, \ldots, w_n
the Logarithmic Method assigns a data element to node i with prob-
ability $\frac{w_i}{W}$, where $W := \sum_{i=1}^{|V|} w_i$.DistributedDistributedTelematicsand Computer Forensics26University of Freiburg
Christian Schindelhauer

Proof of Fact



Distributed Storage Networks and Computer Forensics Winter 2011/12

Probability that a Height is in an Interval

$$P [H; \ge h - S \land H]; \ge h]$$

$$= \Lambda - e^{-hw} - (\Lambda - e^{-(h - S) \cdot w})$$

$$= e^{-(h - S) \cdot w} - hw$$

Distributed Storage Networks and Computer Forensics Winter 2011/12

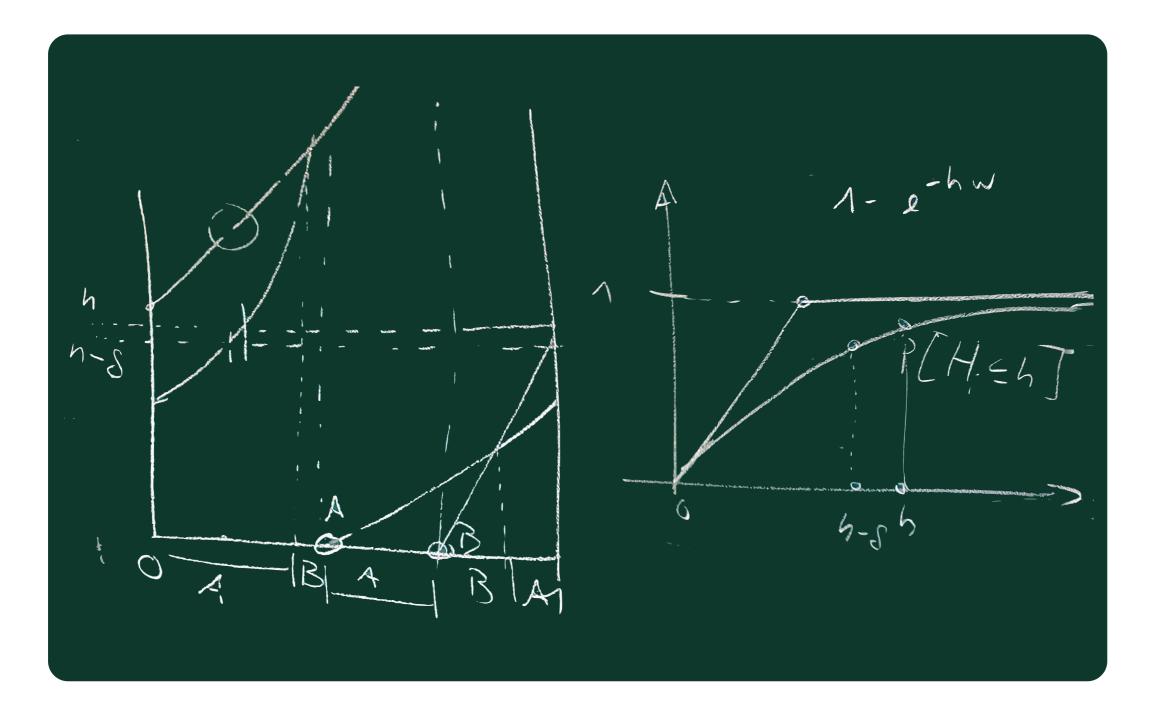
Proof of Theorem 2

Proof: Hence, the probability that a data element receives height in the interval $[h-\delta, h[$ and receives larger height than h for all other nodes is at most

$$\mathbf{P}\left[H_i \ge h - \delta \land H_i < h \land \bigwedge_{j \neq i} H_j \ge h\right] = \left(e^{-w_i(h-\delta)} - e^{-w_ih}\right) \prod_{j \neq i} e^{-w_jh} = e^{-w_ih} \left(e^{w_i\delta} - 1\right) \prod_{j \neq i} e^{-w_jh} = \left(e^{w_i\delta} - 1\right) \prod_{j \in [n]} e^{-w_jh}$$

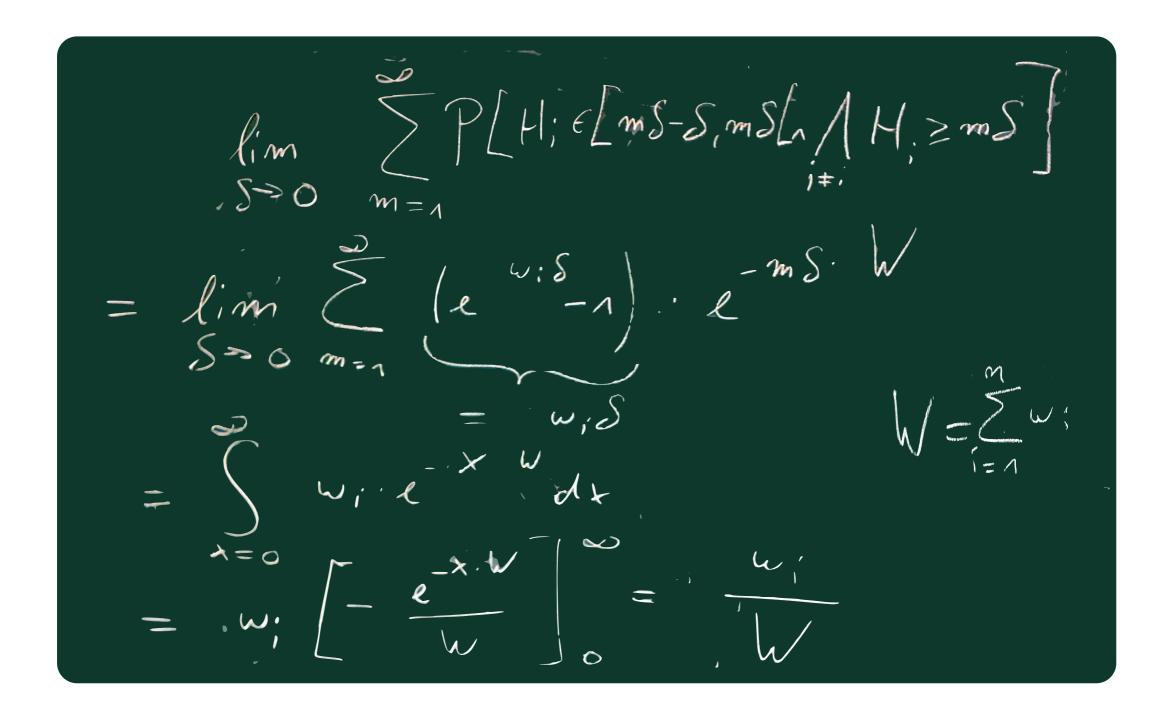
Distributed Storage Networks and Computer Forensics Winter 2011/12

Proof of Theorem 2



Distributed Storage Networks and Computer Forensics Winter 2011/12

Proof of Theorem 2



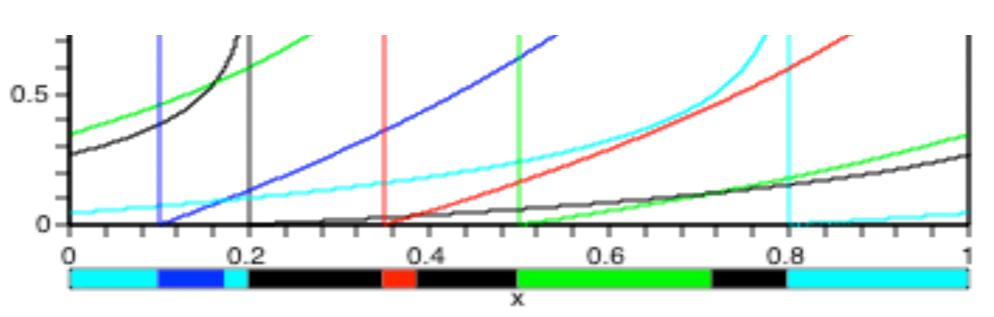
Distributed Storage Networks and Computer Forensics Winter 2011/12

The Logarithmic Method

Replacing the linear function with -ln((1-d_i(x)) mod 1)/w_i improves the accuracy of the probability distribution

Theorem 7 For all $\epsilon > 0$ and c > 0 there exists c' > 0, where we apply the Logarithmic Method with $c' \log n$ partitions. Then, the following holds with high probability, i.e. $1 - n^{-c}$.

Every node $i \in V$ receives data elements with probability p_i such that



$$(1-\epsilon)\cdot \frac{w_i}{W} \leq p_i \leq (1+\epsilon)\cdot \frac{w_i}{W}.$$

Distributed Storage Networks and Computer Forensics Winter 2011/12

Further Features

Efficient data structure for the linear and logarithmic method

- can be implemented within O(n) space
- Assigning elements can be done in O(log n) expected time
- Inserting/deleting new nodes can be done in amortized time O(1)

Predicting Migration

 The height of a data element correlates with the probability that this data element is the next to migrate to a different server

Fading in and out

- Since the consistency works also for the weights:
- Nodes can be inserted by slowly increasing the weight
- No additional overhead
- Node weight represents the transient download state
- Vice versa for leaving nodes

Double Hashing

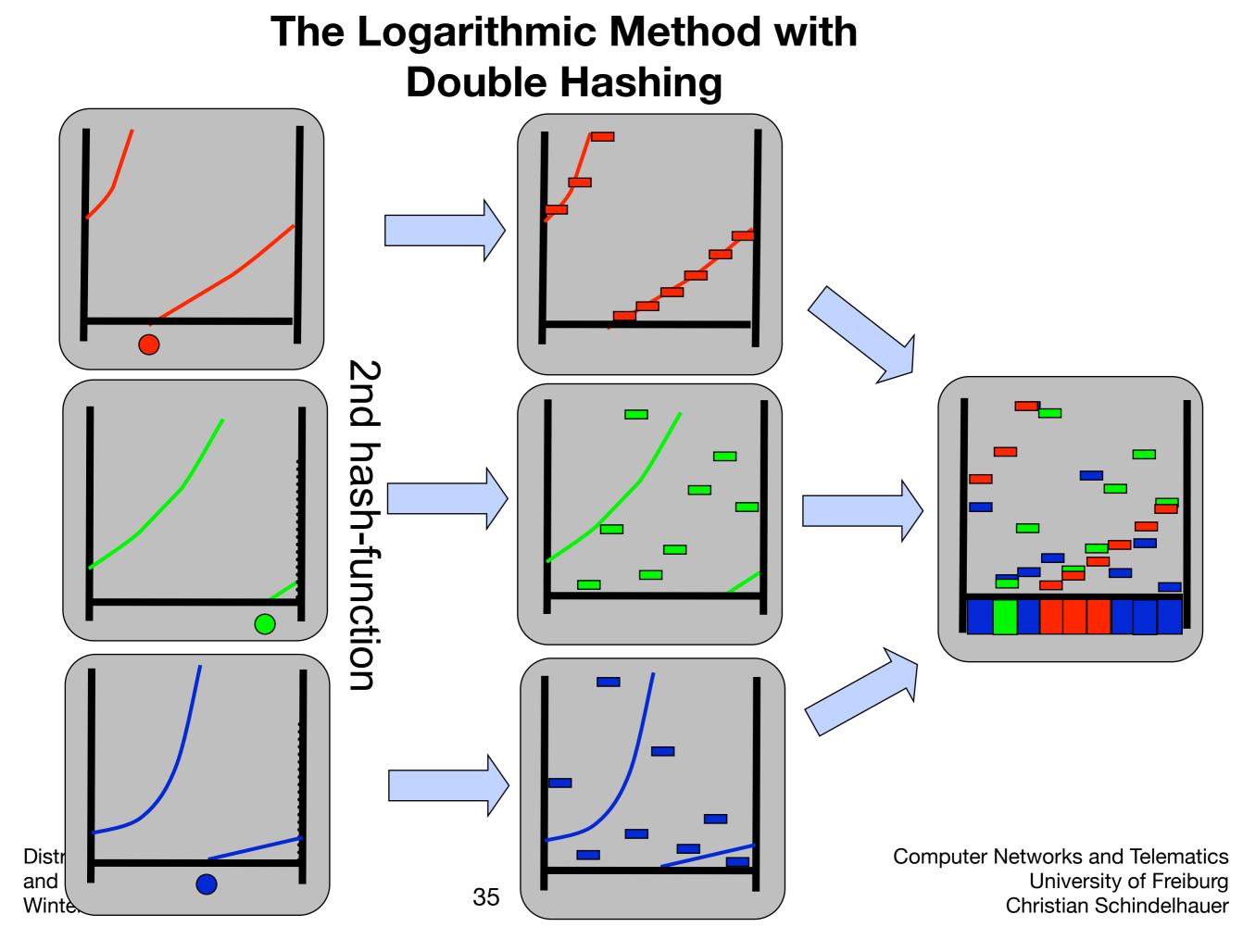
 If every node uses a different hashing, then the logarithmic method can be chose without any copies

For this, we apply for each node an individual hash function $h: V \times [0,1) \rightarrow [0,1)$. So, we start mapping the data element x to $r_x \in [0,1)$ as above and then for every node we compute $r_{i,x} = h(i, r_x)$. Now x is assigned to a node i which minimizes $r_{i,x}/w_i$ according the Linear Method. In the Logarithmic Method x is assigned to the node minimizing $-\ln(1-r_{i,x})/w_i$.

Advantage:

- Perfect probability distribution
- Disadvantage:
 - Intrinsic linear time w.r.t. the number of servers

This is the method of choice for Storage Area Networks



Allocation Problem in Storage Networks

• Given:

- S: set of servers with bandwidth b(s) and capacity |s| for each server s
- D: set of documents with size |d| and popularity p(d) for each document
- Find: A_{d,s}: Number of bytes of document d assigned to storage s
- Allocation using DHHT
 - Use DHHT to split each document d into |S| sets of blocks according to weights A_{d,s}
 - Store blocks of all corresponding |D| subsets on server s

The Problem in SAN

- A_{d,s}: Number of bytes of document d assigned to storage s
- Distributed Algorithm:
 - Use DHHT to split each document into |S| parts
 - Store corresponding blocks on the server
- Can be also achieved by a centralized algorithm
- Straight forward generalization of fair balance
 - Distribute data according to a (m x n) distribution matrix A where

$$\forall s : \sum_{d} A_{d,s} \leq |s|$$
 and $\forall d : \sum_{s} A_{d,s} = |d|$

- **DHHT**
 - assigns $A_{d,s}(1 \pm \varepsilon)$ elements of $d \in D$ to $s \in S$
 - Information needed: File-IDs, Server-IDs, and matrix A
 - If matrix A changes to A' $(1 + \varepsilon) \sum_{d,s} |A_{d,s} A'_{d,s}|$ data reassignments are needed

Distributed Storage Networks and Computer Forensics Winter 2011/12

How to Balance

- A fair balance like $A_{d,s} = |d| \cdot \frac{|s|}{\sum_{s' \in S}}$ is not always the best to do
- Servers are different in capacity and bandwidth
- Documents are different in size and popularity
- Goal: Optimize Time
- Assumption
 - All sizes can be modeled as real numbers

Which Time ?

- b(s) = bandwidth of server s
 - b(s) = number of bytes per second
- > p(d) = popularity of document d
 - p(d) = number of read/write accesses
- Sequential time for a document d and an assignment A

SeqTime_A(d) :=
$$\sum_{s \in S} \frac{A_{d,s}}{b(s)}$$

Parallel time for a document d and an assignment A

ParTime_A(d) := max_s
$$\in$$
 s $\left\{ \frac{A_{d,s}}{b(s)} \right\}$

- Observation
 - Popular bytes cause more traffic than less popular once
 - Costs are defined by the traffic per byte

Sequential Time

Sequential time

• load all parts of a document from all servers sequentially

$$\operatorname{SeqTime}_A(d) := \sum_{s \in \mathcal{S}} \frac{A_{d,s}}{b(s)}$$

Worst case sequential time

WSeqTime := max_d {SeqTime_A(d)}

• Average sequential time

AvSeqTime :=
$$\sum_{d \in D} p(d)$$
 SeqTime_A(d)

- where
 - S: set of servers with bandwidth b(s) and capacity |s| for each server s
 - D: set of documents with size |d| and popularity p(d) for each document

Parallel Time

Parallel time

• load all parts of a document from all servers simultaneously

$$\operatorname{ParTime}_{A}(d) := \max_{s \in \mathcal{S}} \left\{ \frac{A_{d,s}}{b(s)} \right\}$$

• Worst case parallel time

WParTime := max_d {ParTime_A(d)}

• Average parallel time

AvParTime :=
$$\sum_{d \in D} p(d)$$
 ParTime_A(d)

- where
 - S: set of servers with bandwidth b(s) and capacity |s| for each server s
 - D: set of documents with size |d| and popularity p(d) for each document

Sequential Bandwidth

Sequential time

• load all parts of a document from all servers sequentially

$$\operatorname{SeqTime}_A(d) := \sum_{s \in \mathcal{S}} \frac{A_{d,s}}{b(s)}$$

- Sequential bandwidth
 - download speed of a document d

$$\operatorname{SeqBandwidth}_A(d) := \frac{|d|}{\operatorname{SeqTime}_A(d)}$$

Worst case sequential bandwidth

WBandwidth := mind {SeqBandwidth_A(d)}

Average sequential bandwidth

AvBandwidth :=
$$\sum_{d \in D} p(d)$$
 SeqBandwidth(d)

- where
 - S: set of servers with bandwidth b(s) and capacity |s| for each server s
 - D: set of documents with size |d| and popularity p(d) for each document

Parallel Bandwidth

Parallel time

• load all parts of a document from all servers in parallel

ParTime_A(d) :=
$$\max_{s \in S} \left\{ \frac{A_{d,s}}{b(s)} \right\}$$

download speed of a datum d

Parallel bandwidth

$$\operatorname{ParBandwidth}_{A}(d) := \frac{|d|}{\operatorname{ParTime}_{A}(d)}$$

Worst case parallel bandwidth

WParBandwidth := mind {ParBandwidthA(d)}

Average parallel bandwidth time

AvParBandwidth:= $\sum_{d \in D} p(d)$ ParBandwidth_A(d)

- where
 - S: set of servers with bandwidth b(s) and capacity |s| for each server s
 - D: set of documents with size |d| and popularity p(d) for each document

Most Reasonable Time Measures

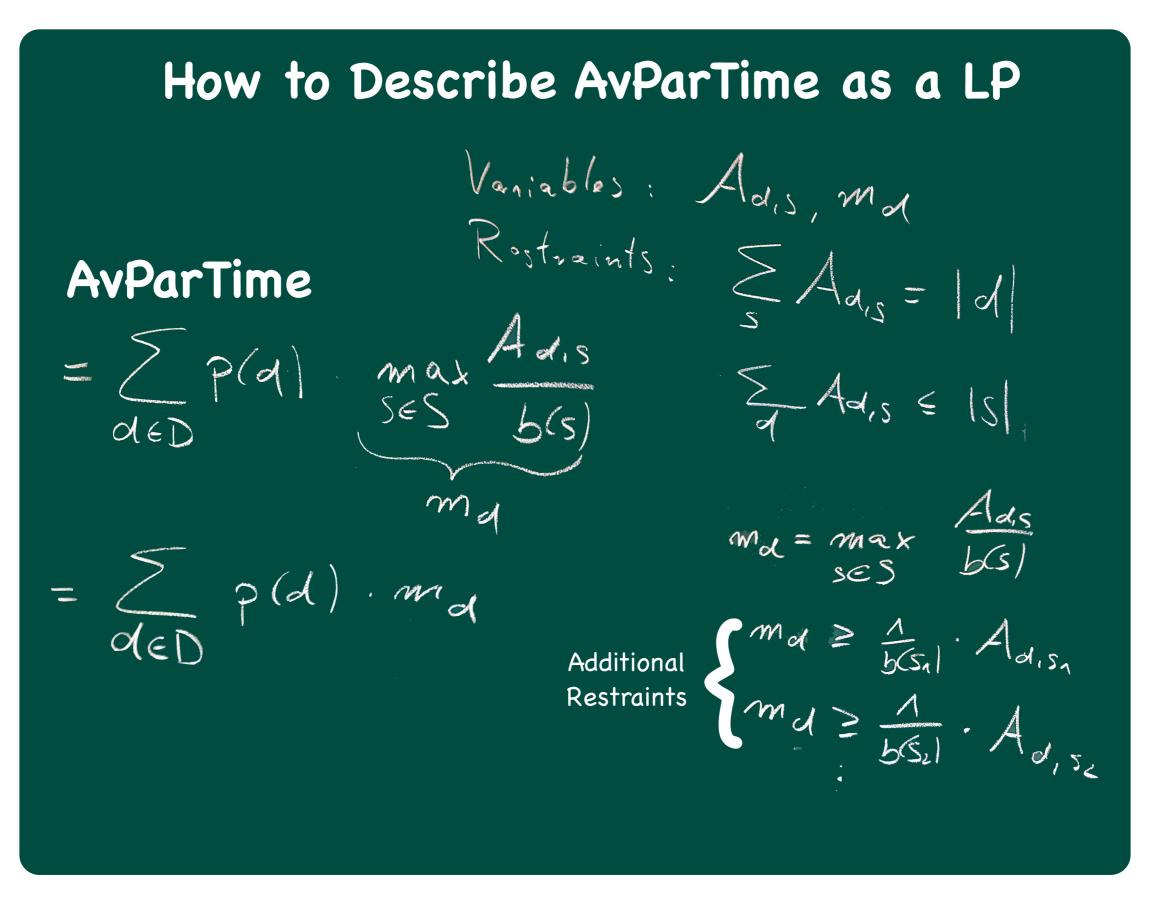
 Minimize the expected sequential time based on popularity of the document:

AvSeqTime
$$(p, A) = \sum_{d \in D} \sum_{s \in S} p(d) \frac{A_{d,s}}{b(s)}$$

 Minimize the expected parallel time based on the popularity of the document

$$\operatorname{AvParTime}(p, A) = \sum_{d \in D} \max_{s \in S} \frac{A_{d,s}}{b(s)} p(d)$$

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer



Distributed Storage Networks and Computer Forensics Winter 2011/12

Solution by Linear Program

$$\forall s : \sum_{d} A_{d,s} \le |s|$$

$$\forall d: \sum_{s} A_{d,s} = |d|$$

Measure	Linear programm	Add. variables	Additional restraint	Optimize
AvSeqTime	yes	—		$\min \sum_{s \in S} \sum_{d \in D} p(d) \frac{A_{d,s}}{b(s)}$
WSeqTime	yes	m	$=$ set $\sigma(s) =$	min m
AvParTime	yes	$(m_d)_{d\in\mathcal{D}}$	$orall s \in \mathcal{S}, orall d \in \mathcal{D}: rac{A_{d,s}}{b(s)} \leq m_d$	$\min \sum_{d \in \mathcal{D}} p(d) m_d$
WParTime	yes	m	$orall s \in \mathcal{S}, orall d \in \mathcal{D}: rac{A_{d,s}}{b(s)} \leq m$	min M
AvSeqBandwidth	no	—	—	$\max \sum_{d \in \mathcal{D}} \frac{p(d) d }{\sum_{s \in \mathcal{S}} \frac{A_{d,s}}{b(s)}}$
WSeqBandwidth	yes	m	$orall d \in \mathcal{D}: \sum_{s \in \mathcal{S}} rac{A_{d,s}}{ d b(s)} \leq m$	
AvParBandwidth	no	$(m_d)_{d\in\mathcal{D}}$	$orall d \in \mathcal{D}: \sum_{s \in \mathcal{S}} rac{A_{d,s}}{b(s) d } \leq m_d$	$\max \sum_{d \in \mathcal{D}} \frac{p(d)}{m_d}$
WParBandwidth	yes	m	$orall s \in \mathcal{S}, orall d \in \mathcal{D}: rac{A_{d,s}}{ d b(s)} \leq m$	min m

Storage device

- s₁: 500 GB, 100 MB/s
- s₂: 100 GB, 50 MB/s
- s₃: 1 GB 1000 MB/s

Documents

- d₁: 100 GB, popularity 1/111
- d₂: 5 GB, popularity 100/111
- d₃: 100 GB, popularity 10/111

A d,s	S1	S 2	S3	Σ
d1	100	0	0	100
d ₂	2	2	1	5
d ₃	2	98	0	100
Σ	≤ 500	≤ 100	≤ 1	

Example

	SeqTime	SeqBand width	ParTime	ParBand width
d1	1000	100	1000	100
d2	61	82	40	125
d ₃	1980	51	1960	51
Av	242	79	222	118
Worst case	1980	51	1960	51

Distributed Storage Networks and Computer Forensics Winter 2011/12

Excursion: Linear Programming

- Linear Program (Linear Optimization)
- **Given:** m × n matrix A

m-dimensional vector b

n-dimensional vector c

- Find: n-dimensional vector x=(x₁, ..., x_n)
- such that
 - $x \ge 0$, i.e. for all j: $x_j \ge 0$

• A x = b, i. e.
$$\sum_{j=1}^{n} \sum_{i=1}^{m} A_{ij} x_j = b_j$$

• z = c^T x is minimized, i.e. $z = \sum_{j=1}^{n} c_j x_j$ is minimal

Distributed Storage Networks and Computer Forensics Winter 2011/12

Linear Programming 2

- Linear Programming (LP2)
- Given: m × n matrix A

m-dimensional vector b

n-dimensional vector c

- Find: n-dimensional vector x=(x₁, ..., x_n)
- such that
 - x ≥ 0
 - A x ≤ b
 - $z = c^T x$ is maximal

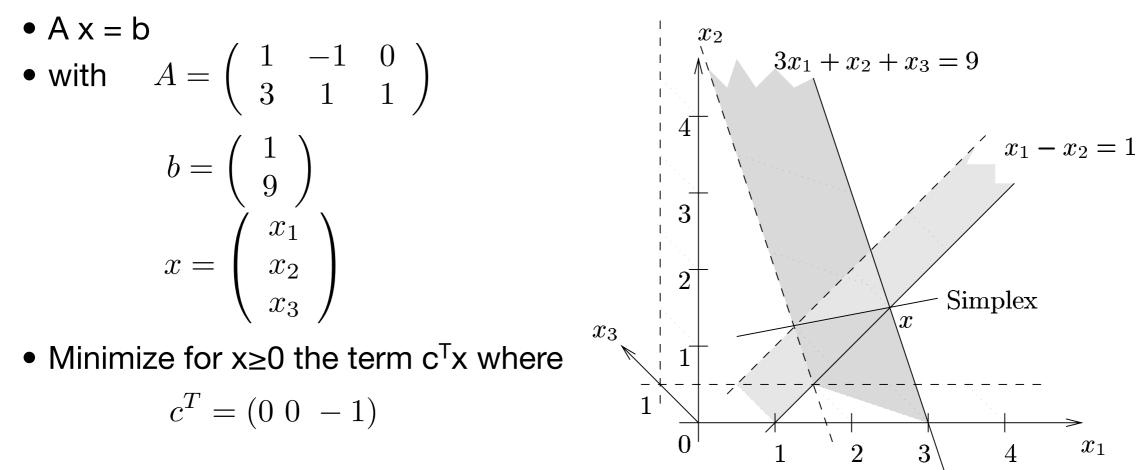
LP = LP2

Lemma

- LP can be reformulated as an LP2 and vice versa.
- The problem size increases only by a constant factor.
- Proof:

Geometric Interpretation

• Example:

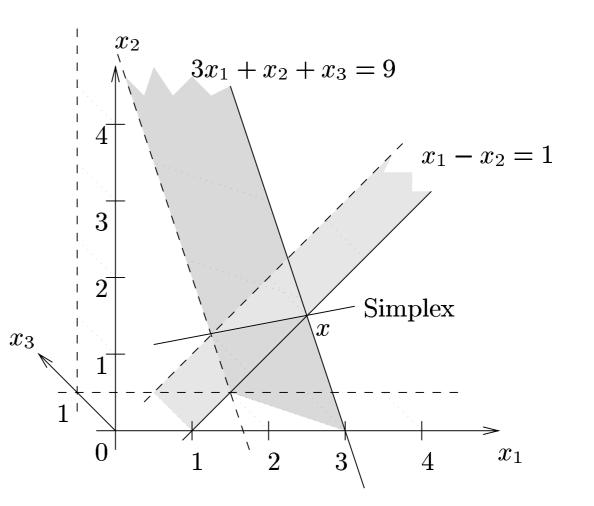


Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Simplex Algorithm

- All solutions are in an intersection
 - of hyper-planes (A x = b)
 - and half-planes x≥0
- This is a simplex
- First construct a basis solution x on the vertices of the simplex
 - x_i is called a basis variable
 - which suffices Ax=b and $x\ge 0$
 - but is not optimal
 - if x_i=0 it is called degenerated
- Consider all edges of the simplex
 - walk along the edge which improves the solution
 - until the next the next vertex
 - Choose it as new basis solution
- Repeat until the optimum has been reached

Distributed Storage Networks and Computer Forensics Winter 2011/12



Intuition for the Simplex-Algorithm

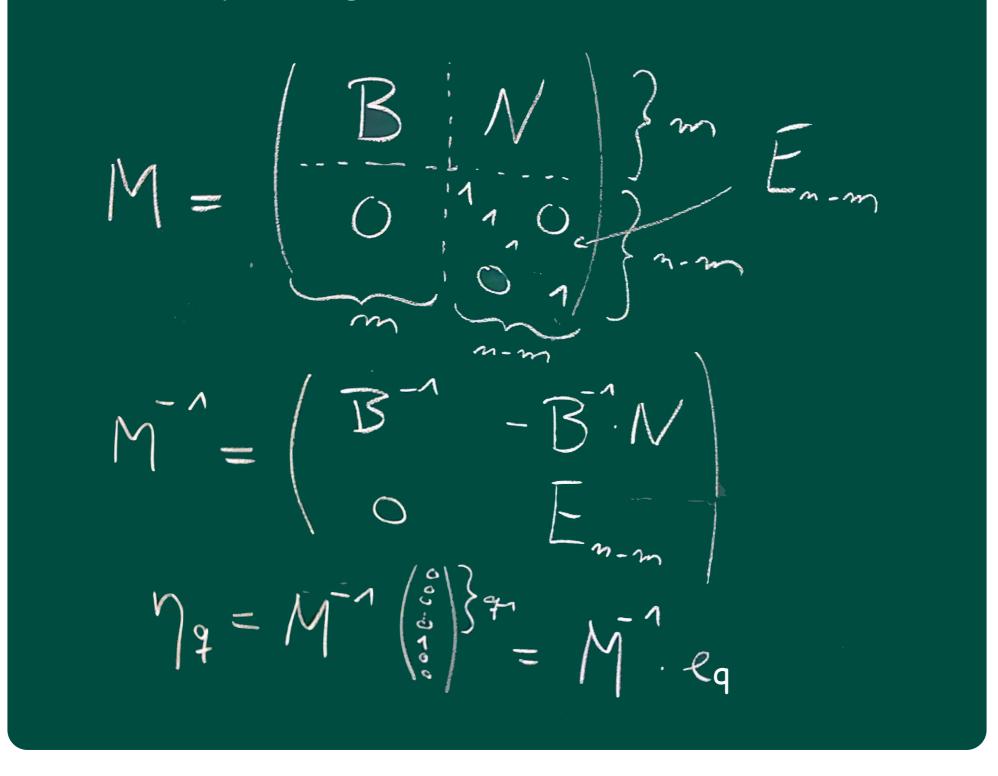
$$A = \begin{pmatrix} B & M & M \\ M & M & M \end{pmatrix}$$

$$C = \begin{pmatrix} C_{B} & M & M \\ C_{V} & M & M \end{pmatrix}$$

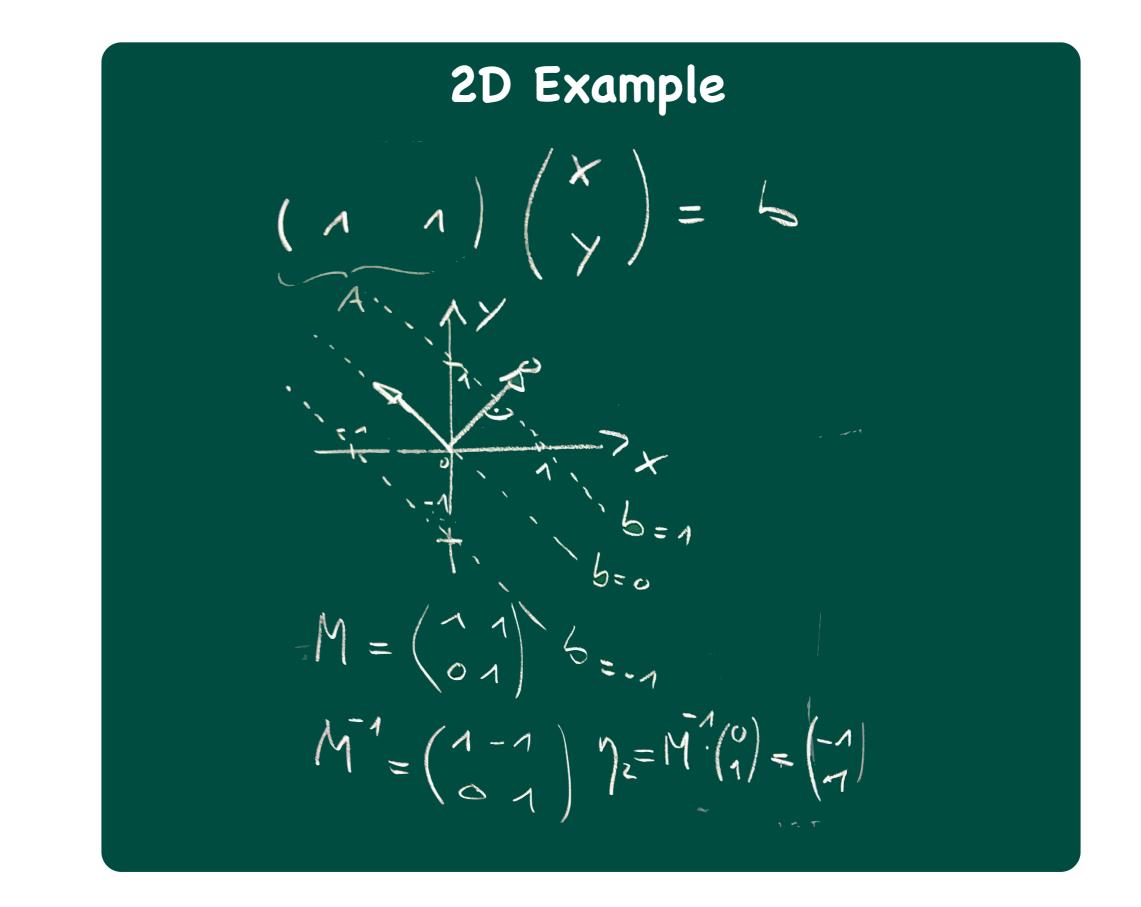
$$A \text{ line in } A \text{ describes the normal vector of the hyper-plane.}$$

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Computing the Parallel Vectors



Distributed Storage Networks and Computer Forensics Winter 2011/12

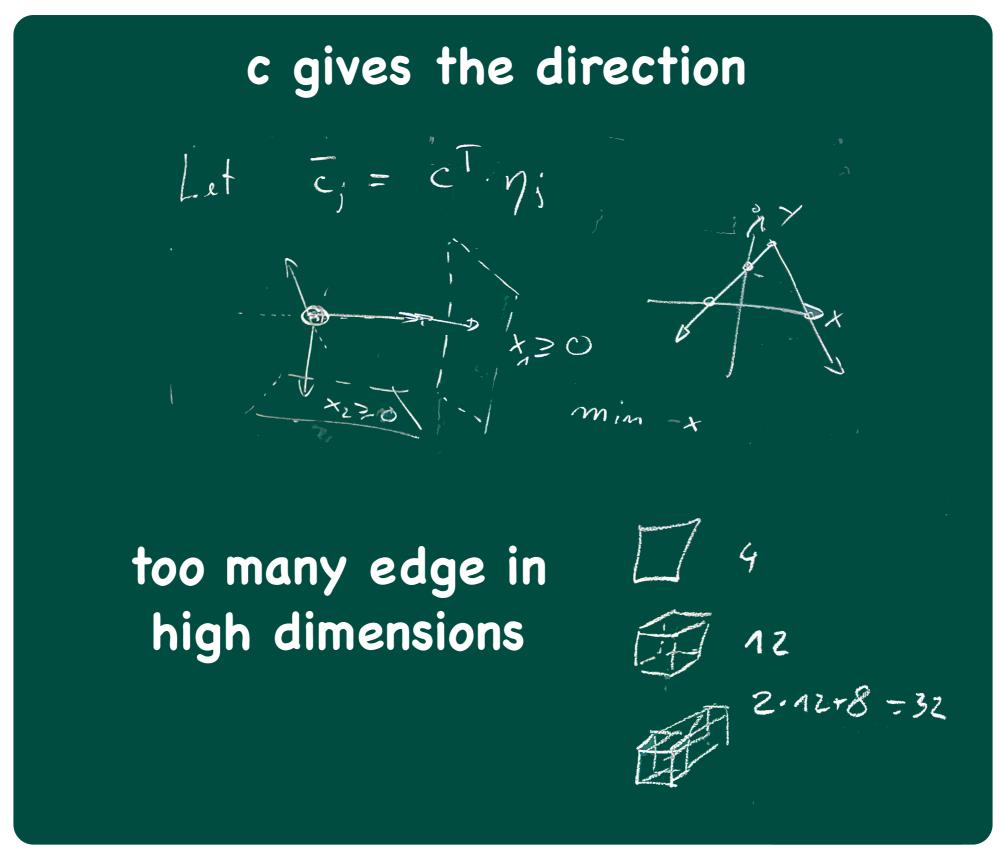


Distributed Storage Networks and Computer Forensics Winter 2011/12

The Solution is in Sight

For g2m ng is a vector parallel to the m-1 hypr-planes which are not the q-th line of A. If x is a solution for Ax=6 Then every point yof the solution space is described by $Y = x + \sum_{j=m+n} \gamma_j \cdot z_j \in \mathbb{R}$

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer



Distributed Storage Networks and Computer Forensics Winter 2011/12

Simplex Algorithm

Distributed Storage Networks and Computer Forensics Winter 2011/12

}

Simplex Algorithm input: $m \times n$ -matrix A, m-dim. vector bn-dim. vector c{ $I_B \leftarrow a \text{ set } \{j_1, \ldots, j_m\}$ of m positions with independent column vectors in A $B \leftarrow (a_{j_1}, \ldots, a_{j_m})$ $x \leftarrow B^{-1}b$ $stop \leftarrow false$ while \neg stop do $\{ c_B \leftarrow (c_{j_1}, \ldots, c_{j_m}) \}$ for all $j \notin I_B$ do $\overline{c_j} \leftarrow c_j - c_B B^{-1} a_j$ $optimal \leftarrow \bigwedge_{j \notin I_B} \overline{c_j} \ge 0$ $stop \leftarrow optimal$ if \neg stop then $\{ V \leftarrow \{ j \notin I_B \mid \overline{c_j} < 0 \}$ $q \leftarrow \text{arbitrary element from } V$ $w \leftarrow B^{-1}a_q$ $stop \leftarrow (w \leq 0)$ if \neg stop then { Determine j_p such that $\frac{x_{j_p}}{w_p} = \min_{1 \le i \le m} \{ \frac{x_{j_i}}{w_i} \mid w_i \ge 0 \}$ $s \leftarrow rac{x_{j_p}}{w_p}$ $x_q \leftarrow s$ for all $i \in \{1, \ldots m\}$ do $x_{j_i} \leftarrow x_{j_i} - sw_i$ $B \leftarrow$ replace column q by column j_p . $I_B \leftarrow (I_B \setminus \{q\}) \cup \{j_p\}$ $j_p \leftarrow q$ } if optimal then return x else return no lower bound

Performance

- Worst case time behavior of the Simplex algorithm is exponential
 - A simplex can have an exponential number of edges
- For randomized inputs, the running time of Simplex is polynomial on the expectation
- The Ellipsoid algorithm is a different method with polynomial worst case behavior
 - In practice it is usually outperformed by the Simplex algorithm

ParTime = SeqTime with virtual servers

Reduce optimal solution for LP of ParTime to the optimal solution of LP of SeqTime

 Combining capacity of many disks in parallel

Define new sequential virtual servers

– Sort s_i such that

$$rac{|s_j|}{b(s_j)} \le rac{|s_{j+1}|}{b(s_{j+1})}$$

- Server s'_j parallelizes servers $s_j,...,s_{|S|}$
- Virtual servers s'_i are then sorted such that b(s'_i)>b(s'_{i+1})
- $-Size of s'_i$:

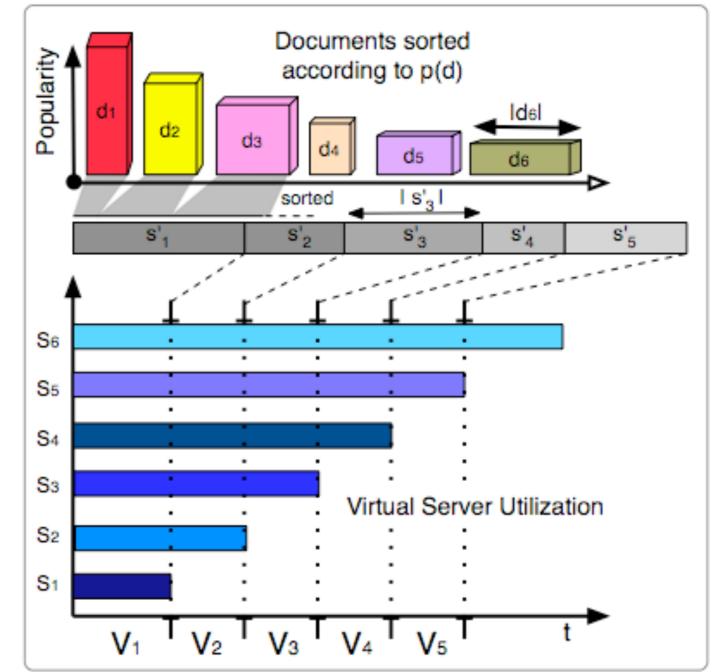
$$t_j = \frac{|s_j|}{b(s_j)} - \sum_{i=1}^{j-1} t_i \qquad s'_j$$

 $s'_i = b(s'_i) \cdot t_j$

Distributed Storage Networks and Computer Forensics Winter 2011/12

Solve the LP of AvSeqTime

- Simple optimal greedy solution
- Repeat until all documents are assinged:
 - Assign most popular document on fastest sequential (virtual) server
 - Reduce the storage of the server by the document size and remove the document



Computer Networks and Telematics University of Freiburg Christian Schindelhauer

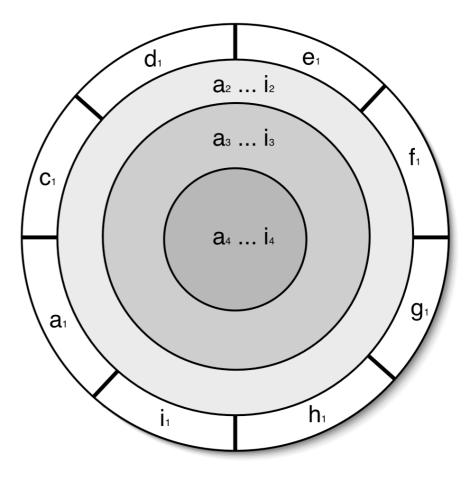
Applications in SAN

Object storage with different popularity zones

- e.g. movies with varying popularities over time
- Fragmentation is done automatically
- Includes dynamics for adding and removing documents
- The same for servers

Use different bandwidth

- Each disk has different bandwidths
- Exporting different zone classes as sequential servers



From DHT to DHHT

Distributed Heterogeneous Hash Table (DHHT)

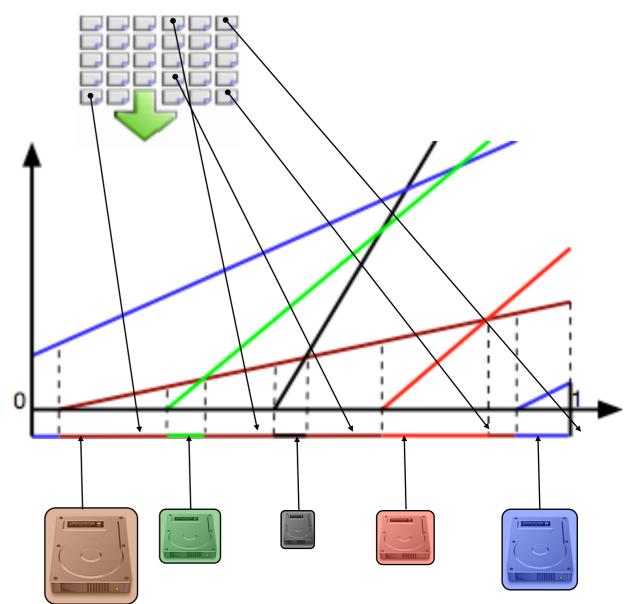
- a straight-forward extension of the original DHT
- efficient, fair
- Linear Method
 - Nice pictures
 - Performs quite well
 - Needs copies for fairness, and O(log n) partitions

Logarithmic Method

- Performs perfectly
- Needs O(log n) partitions if more than one data item is used
- is optimal when combined with double hashing

• Applications of DHHT

- MANET, Peer-to-Peer-Networks
- SAN: optimize time with very simple assignment rules



Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Distributed Storage Networks and Computer Forensics 9 Distributed Heterogeneous Hash Tables

Christian Schindelhauer

University of Freiburg Technical Faculty Computer Networks and Telematics Winter Semester 2011/12

