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The Uniform Problem

» Given
e a dynamic set of n nodes V = {v1, ..., vn} Data ltems X
e data elements X = {x1, ..., Xm}
» Find
e amappingfyv: X -V E] V

» With the following properties
¢ The mapping is simple ,
- fv(x) be computed using V and x mapping f
- without the knowledge of X\{x}
e Fairness:
- [fvT(v)| = [fvT (W)
e Monotony: LetV c W
- Forallv e V: fv(v) 2 fw(v) Nodes: V

» where fv'(v):i={xe X:fy(x)=v}
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Distributed Hash Tables
THE Solution for the Uniform case

» “Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot
Spots on the World Wide Web”,

e David Karger, Eric Lehman, Tom Leighton,
Mathhew Levine, Daniel Lewin, Rina Panigrahy,

STOC 1997
e Present a simple solution
» Distributed Hash Table
e Chooose a space M =[0,1]
e Map nodes v to M via hash function
- h:V—-M
¢ Map documents and servers to an interval
- h:X—->M

e Assign a document to the server which
minimizes the distance in the interval

e fy(x) = argmin{v €V: (h(x)-h(v))mod 1}
- wherexmod 1:=x- [ x|
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The Performance of Distributed
Hash Tables

» Theorem
e Data elements are mapped to node i with probability p. = 1/|V|, if the
hash functions behave like perfect random experiments
» Balls into bins problem

o Expected ratio max(p)/min(p;, = Q(log n)

» Solutions:
e Use O(log n) copies of a node
— Principle of multiple choices

- check at some O(log n) positions and choose the largest empty
interval for placing a node,

— Cookoo-Hashing

- every node chooses among two possible position
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The Heterogeneous Case

» Given Data ltems X
e a dynamic set of n nodes V = {v1, ..., Vn}
e dynamic weightsw :V = R+ . .

e dynamic set of data elements X = {x4,...,Xm}
» Find a mapping fuyv: X =V

» With the following properties apping f
e The mapping is simple
- fwv(x) be computed using V, x, w without the knowledge of X\{x} /
e Fairness: forallu,v € V:

- | fwy  (U/W(U) = | fuy (V) W(V)
e Consistency:
- LetVcW: ForallveV: Nodes: V
* fwv (V) 2 fuw (V) Weights: w
- Let for all v e V\{u}: w(v) = w’(v) and w’(u)>w(u):
= forall ve VWu}: fwyv(v) 2 fwv(v) and fwy1(u) € fw v (u)

» where fuyv(v):i={xe X:fav(X)=v}
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Some Application Areas

» Proxy Caching
e Relieving hot spots in the Internet

Mobile Ad Hoc Networks
e Relating ID and routing information

v

» Peer-to-Peer Networks
e Finding the index data efficiently

» Storage Area Networks
e Distributing the data on a set of servers
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Application
Peer-to-Peer Networks

» Peer-to-Peer Network:
e decentralized overlay network delivering services over the Internet
¢ no client-server structure
- example: Gnutella
» Problem: Lookup in first generation networks very slow
» Solution:
e Use an efficient data structure for the links and
e map the keys to a hash space
» Examples:
— CAN
- maps keys to a d-dimensional array
- builds a toroidal connection network,
* where each peer is assigned to rectangular areas
—Chord
- maps keys and peers to a ring via DHT
- establishes binary search like pointers on the ring
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Application
Storage Networks

» Distribute data over a set of hard disks (like RAID)
e Nodes = hard disks
e Data items = blocks
» Problem
e Place copies of blocks for redundancy
e |f a hard disk fails other hard disk carry the information
e Add or remove hard disks without unnecessary data movement

e Hard disks may have different sizes
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Storage Network Architecture

» Avoid server based architectures
e Assignment of data is not flexible enough

e High local storage concentration (for LAN traffic
reduction)

e | ow availability of free capacity
» Basic SAN concept

e Combine all available disks into a single virtual one

e Server independent existence of storage
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Distributed Storage Networks

Challenges in Storage
Networks

Heterogeneity

¢ hard disks typically differ in capacity and speed
Popularity

e some data is popular and other not (e.g. movies, music :-)
¢ their popularity rank varies over time
Consistency

e system changes by adding or re-placing/moving
e preserving a fair share rate

e only necessary data replacements must be done
Availability

¢ hard disks may fail, but data should not!
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Traditional Virtualization in SAN
waterproof definitions

Hot swap RAID O

RAID 1 RAID 5 RAID O+1
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Deterministic Uniform SAN
Strategies

» DRAID
e distributed Cluster Network for uniform storage nodes
e uses RAID: striping/mirroring und Reed-Solomon encoding
e organized in matrix rows => scalability only in groups of columns size

RAID LEVEL 5 : Independent Data Disks with Distributed Parity Blocks

» Good old stuff
e RAIDO, I, IV,V,VI
(striping, mirroring, : : e
XOR, distributed — o |

XOR, XOR + Reed-
Solomon)

Generation :
4 PARITY B4 (o

A Blocks B Blocks C Blocks D Blocks E Blocks

» Problems:
e scalability and availability is hard to combine
e Re-Striping (time is money), huge offset tables (lookup is expansive),
e storage concatenation without load balancing (disks are remaining full)
e Only storage nodes with uniform capacities are allowed
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The Heterogeneous Case

> Given

— a dynamic set of n nodes V = {vq, ..., v}

— dynamic weights w : V — R+

— dynamic set of data elements X = {X4,...,X.}

» Find a mapping f,,y : X =V
» With the following properties
— The mapping is simple
e f,v(X) be computed using V, x, w
e without the knowledge of X\{x}
— Fairness: for allu,v €V:
o | fuy T UIVW(U) = | fy WV W(Y)
— Consistency:

e minimal replacements to preserve
the data distribution

> where f,1(v):={xeX:f,yXx)=Vv]}
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The Naive Approach to DHT

Wj ! .
e Use [minjev {wj}w copies for each node w;

e This is not feasible, if max cy{w;}/ min;cy{w;} is too large

e Furthermore, inserting nodes with small weights increases the number of
copies of all nodes.

Huge Share
~ 1000
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SIEVE: Interval based
consistent hashing

» Interval based approach
e Brinkmann, Salzwedel, and

Scheideler, SPAA 2000
» Map nodes to random intervals (via

Normal Huge Share
~1 ~ 1000

hash function)
e interval length proportional to weight

» Map data items to random positions ° Q

(via hash function)
» Two problems
e \What to do if intervals overlap?

e \What to do if the unions of intervals
do not overlap the hash space M?

- =

empty overlap
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SIEVE: Interval based
consistent hashing

1.What to do if intervals overlap?

— Uniformly choose random
candidate from the overlapping
Intervals

2. What to do if the unions of intervals
do not overlap the hash space M?

— Increase all intervals by a constant
factor (stretch factor)

— Use O(log n) copies of all nodes
e resulting in O(n log n) intervals
» If more nodes appear

— then decrease all intervals by a
constant factor

» SIEVE is not providing monotony

— Re-stretching leads to unnecessary
re-assignments
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The Linear Method

» Alternative presentation of (uniform)
Consistent Hashing

» After “randomly” placing nodes into M

¢ Add cones pointing to the node’s
location in M

» Compute for each data element x the
height of the cones

e Choose the cone with smallest height

» For the Linear Method

e Choose for each node i a cone
stretched by the factor wi

» Compute for each data element x the
height of the cones

e Choose the cone with smallest height
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The Linear Method: Basics

» For easier description we use half-cones,

* the weighted distance is D (r. s) - ((s —r)mod 1)

w

- where xmod 1 :=x- | x|

» Analyzing heights is easier as analyzing interval lengths!
» Define: H(z):= min,cyv Dy, (2, Su)

e (Consider one data element and n randomly hashed nodeg @

.
oooooono:OOOOOOOOOOF, 2 00000000000000000000000000000000
b . . .
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The Linear Method: Basics

LEMMA 1. Given n nodes with weights w, ..., wn. Then the
height H (r) assigned to a position r in M is distributed as follows:

[Licpy(X = hwi), ifh < min;{ uil}

0, else

PH(r) > h] = {

> Proof:

_ The probability of to receive H(z) := min,cv Dy, (2, 84)
height of at least h with respect
toanodeiis

O

1-h W, H(Z)
— Since
: 1
1 h >
PlH; < h| = | — Wi O

h-w,; else. r
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An Upper Bound for Fairness

THEOREM 1. The Linear Method stores with pr()babilit\' ()f at

. . . v
most v—-— a data element at a node i, where W : Zl |

Proof:

From Lemma 1 follows

X . _ 0, 37 : h > ui
Pl[H; € [h,h + 6| AVj #i: Hj > h] = ow; [ [,;(1 — hw;) else. |

We define Pz’.,h_’(s = Ow; Hj#i(l—h.’lb’j)

and the following term describes an upper bound

E'm,:l P sm,s where h = mo
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An Upper Bound for Fairness

()

THEOREM 1. The Linear Method stores with probability of at

most 5

wy

V—w;

. i Vv
a data element at a node i, where W := Z-|::|1 Wi .

Proof (continued):

] ~ —aom
lim Pism,s < lim w;o0e
§—s() &—t §—() &—t
m=1 m=1
oo 711 .
- (L. u” 1
— W;e dr = —
J =0 a
W;

D j#i Wi
B
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The Limits of the Linear
Method

THEOREM 5. The Linear Method (without copies) for n nodes

with weights w, = 1 and wo, ..., w,_1 = ﬁ assigns a data

element with probability 1 — e~ =~ 0.632 to node 0 when n tends

to infinity.

PROOF. We use Lemma 1 and reduce the probability to the fol-

lowing term.
1 n—1
. €T
lim x| 1— , dx =
n—oo =0 n — ].

1
- e | 4 —1
xPT T
/ re “dr = [—e ]0 —1—e .

x=0

Why does the biggest node win?
The small ones are competing against each other
The big one has no competitor in his league

The solution:
Use copies of each node
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The Linear Method with Copies

THEOREM 2. Let € > 0. Then, the Linear Method using [f’ -
1| copies assigns one data element to node © with probability p;
where
W;

(1-Ve) = < pi < (1+6).

» A constant number of copies suffice to “repair” the linear function
» This theorem works only for one data item

—If many data items are inserted, then the original bias towards some nodes is
reproduced:

* “Lucky” nodes receive more data items
»> Solution

—Independently repeat the game at least O(log n) times
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Partitioning and the Linear
Method

» Partitions:

— Partition the hash range into sub-
Intervals

— Map each data element into the
whole interval

—Map for each node 2/e+1 copies e 6 0'0® oo Q 00

iInto each sub-interval

Theorem 3 For all €, > 0 and ¢ > 0 there exists ¢ > 0 such that when we
apply the Linear Method to n nodes using [% +1] copies and ¢ log n partitions,
the following holds with high probability,ie. 1 — n™°.

Every node 1 € V receives all data elements with probability p; such that

Ww; Ww;
/ l / [
(1—\/E—6)'W§pi§(1+6+6)-w.
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The Logarithmic Method

—In((1 — (r — s)) mod 1)

w

» Replacing the linear function by L(r,s) =

» improves the accuracy

0 0.2 0.4 0.6 0.
= —x_

8 1

FACT 2. Ifinthe Logarithmic Method (without copies and with-
out partitions) a node arrives with weight w then the probability
that data element x with previous height H . is assigned to the new
nodeis 1 — e~ “H=

THEOREM 6. Given n nodes with positive weights wq, ..., wn
the Logarithmic Method assigns a data element to node ¢ with prob-

e s %
ability +%, where W := Zizll Wi .
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Proof of Fact
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Probability that a Height is in an Interval
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Proof of Theorem 2

Proof: Hence, the probability that a data element receives height in the
interval [h—0, h[ and receives larger height than h for all other nodes
IS at most

P|\H,>h—0 N H;<h A /\szh

i 7 _
(63_ wi(h—46) o~ Wi h.) | I e W h _
i#i
—w; h w; o0 —w; h
e (e "—l)lle 7T =
i#i
(eu; i0 l) | | e~ Wi h
j€ln)
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Proof of Theorem 2

R
/T

j -»
1 o l) 1]
~t

4

(]

[ |
~ < -
PERASL YL L e e st e..m.»m\.g.m n\«\s\i‘mmmmw\\" .>
O Ly
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Proof of Theorem 2
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The Logarithmic Method

» Replacing the linear function with -In((1-d;(x)) mod 1 )/w; improves the
accuracy of the probability distribution

Theorem 7 For all ¢ > 0 and ¢ > 0 there exists ¢ > 0, where we apply the
Logarithmic Method with ¢ logn partitions. Then, the following holds with
high probability, i.e. 1 — n°.

Every node 1 € V receives data elements with probability p; such that
wj

(1—€)°W < p < (1+¢)
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Further Features

» Efficient data structure for the linear and logarithmic method

e can be implemented within O(n) space

e Assigning elements can be done in O(log n) expected time

* Inserting/deleting new nodes can be done in amortized time O(1)

» Predicting Migration

The height of a data element correlates with the probability that this data
element is the next to migrate to a different server

» Fading in and out

Since the consistency works also for the weights:
Nodes can be inserted by slowly increasing the weight
No additional overhead

Node weight represents the transient download state

Vice versa for leaving nodes
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Double Hashing

» If every node uses a different hashing, then the
logarithmic method can be chose without any copies

For this, we apply for each node an individual hash function
h :V x[0,1) — [0,1). So, we start mapping the data element
x to rp, € [0,1) as above and then for every node we compute
rie = h(i,r:). Now x is assigned to a node 7« which minimizes
ri.« /w; according the Linear Method. In the Logarithmic Method
x 1s assigned to the node minimizing — In(1 — r; ) /w;.

» Advantage:
e Perfect probability distribution

» Disadvantage:
e [ntrinsic linear time w.r.t. the number of servers

» This is the method of choice for Storage Area

Networks
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The Logarithmic Method with

Double Hashing
() ) (3 )
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Allocation Problem in Storage
Networks

» Given:

e S: set of servers with bandwidth b(s) and capacity |s| for each
server s

e D: set of documents with size |d| and popularity p(d) for each
document

» Find: Ag4,s: Number of bytes of document d assigned to
storage s

» Allocation using DHHT

e Use DHHT to split each document d into |S| sets of blocks
according to weights Aq,s

e Store blocks of all corresponding |D| subsets on server s
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Distributed Storage Networks

The Problem in SAN

Ad,s: Number of bytes of document d assigned to storage s
Distributed Algorithm:

e Use DHHT to split each document into |S| parts

e Store corresponding blocks on the server

Can be also achieved by a centralized algorithm

Straight forward generalization of fair balance

e Distribute data according to a (m x n) distribution matrix A where

Vs: > Adosls] and Vd: Y Avs=ld]

DHHT

e assigns Ad,s(l =+ 8) elementsofde Dtose S

e [nformation needed: File-IDs, Server-IDs, and matrix A

e |f matrix Achangesto A" (1 + S)Ed ) Ads— A'as
data reassignments are needed
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How to Balance

» A fair balance like A:s=ld |-
best to do JES

Is not always the

» Servers are different in capacity and bandwidth

» Documents are different in size and popularity

» Goal: Optimize Time

» Assumption

e All sizes can be modeled as real numbers
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Which Time ?

» b(s) = bandwidth of server s
e b(s) = number of bytes per second
» p(d) = popularity of document d
e p(d) = number of read/write accesses

» Sequential time for a document d and an assignment A

Ad S
SeqTimea(d) = ’
. q A( ) ESES b(S)
» Parallel time for a document d and an assignment A

ParTimea(d) := maxse s{ Ad’s}
» Observation b(s)

e Popular bytes cause more traffic than less popular once

e (Costs are defined by the traffic per byte

Distributed Storage Networks Computer Networks and Telematics
and Computer Forensics 39 University of Freiburg
Winter 2011/12 Christian Schindelhauer

Montag, 19. Dezember 11



Sequential Time

» Sequential time

e |oad all parts of a document from all servers sequentially

. Ad,s
SeqTime 4 (d) := Z n (i)
seS

» Worst case sequential time
WSeqTime := maxq {SeqTimea(d)}
» Average sequential time
AvSeqTime := ) p(d) SeqTimea(d)
» where d€D
e S: set of servers with bandwidth b(s) and capacity |s| for each server s

e D: set of documents with size |d| and popularity p(d) for each document
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Parallel Time

» Parallel time

¢ J|oad all parts of a document from all servers simultaneously

Ags)
ParTime 4 (d) := max | - (C;) |

» Worst case parallel time
WParTime := maxq {ParTimea(d)}

» Average parallel time

AvParTime := ) p(d) ParTimea(d)

» where deD

e S: set of servers with bandwidth b(s) and capacity |s| for each server s

e D: set of documents with size |d| and popularity p(d) for each document
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Sequential Bandwidth

» Sequential time

e |oad all parts of a document from all servers sequentially

Ad,s
SeqTime 4 (d) := : 4
» Sequential bandwidth seS (s)
e download speed of a document d
- d
SeqBandwidth 4 (d) :=
eqBandwidth, (d) SeqTime 4 (d)

» Worst case sequential bandwidth

WBandwidth := ming {SegBandwidtha(d)}

» Average sequential bandwidth

AvBandwidth := » ~p(d) SegBandwidth(d)

» where d€D

e S: set of servers with bandwidth b(s) and capacity |s| for each server s

e D: set of documents with size |d| and popularity p(d) for each document
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Parallel Bandwidth

» Parallel time

e |oad all parts of a document from all servers in parallel

Ad.s
ParTime 4 (d) := max{ 4 }
» Parallel bandwidth ses | b(s)

e download speed of adatum d

. d
ParBandwidth 4 (d) := ParTi|mLA @)

» Worst case parallel bandwidth

WParBandwidth := ming {ParBandwidtha(d)}

» Average parallel bandwidth time

AvParBandwidth:= Z p(d) ParBandwidtha(d)

» where d€D

e S: set of servers with bandwidth b(s) and capacity |s| for each server s

e D: set of documents with size |d| and popularity p(d) for each document
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Most Reasonable Time
Measures

» Minimize the expected sequential time based on
popularity of the document:

Ad,s
b(s)

AvSeqTime(p, A) = > : ) : p(d)
deD seS

» Minimize the expected parallel time based on the
popularity of the document

. d,s
AvParTime(p, A) = max =p(d)
seS b (S)
de
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How to Describe AvParTime as a LP

\/QMCGLL/?E :
R“’B%»QM‘{S :

AvParTime

_ Z | moax “.Ami%

- SN Ly
AeD L__.V:_j)

Mo

Additional
Restraints
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Solution by Linear Program

Vs: ) Adssls) Vd: Y Ads=ld]
Measure Linear programm|Add. variables Additional restraint Optimize
W A a8
AvSeqTime yes e = min ZsES Zde’ﬂ p(d) bfis}
WSeqTime yes m VdeD:)Y, .o ’:(‘IS)*‘ <m |min m
AvParTime yes (Mmd)aep |Vs€S,VdeD: b( y < Md|min ) ,ep p(d)mad
WParTime yes m Vse S,VdeD: d}*‘ < m |min M
AvSegBandwidth no — — max ;. .p £ EL -
ZSES TE;}
WSegBandwidth yes m VdeD:), s jﬁ 5 <m |min m
: Ads d
AvParBandwidth no (ma)acp |[VAdED: ) 55, jlldl < mg|max ), 5 ﬁfm
WParBandwidth yes m Vse d,VdeD: (;} < m|min m
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» Storage device
e s1: 500 GB, 100 MB/s
e so: 100 GB, 50 MB/s
e s3: 1 GB 1000 MB/s

» Documents
e di: 100 GB, popularity 1/111
e do: 5 GB, popularity 100/111
e ds: 100 GB, popularity 10/111

Ads S1 S2 S3 2
d1
d2
ds
2 |<500|<100| =<1

Distributed Storage Networks
and Computer Forensics
Winter 2011/12

Montag, 19. Dezember 11

Example

SeqTime S?Nqigf: d ParTime Ps\:‘ifl?: .
d1 1000 100 1000 100
ds 61 82 40 125
ds 1980 51 1960 o1
Av 242 79 222 118
Worst 1980 51 1960 o1
case
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Excursion: Linear Programming

» Linear Program (Linear Optimization)
» Given: m x n matrix A
m-dimensional vector b

n-dimensional vector ¢

v

Find: n-dimensional vector x=(x1, ..., Xn)
such that

e x>0,i.e.forallj:x;=0

j=1i=1

v

n

e z=c' xis minimized, i.e. z =) ¢;x; is minimal

J=1
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Linear Programming 2

» Linear Programming (LP2)
» Given: m x n matrix A
m-dimensional vector b

n-dimensional vector ¢

v

Find: n-dimensional vector x=(x1, ..., Xn)
such that

e x>0

e AXx<Db

e 7 =c! xis maximal

v
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LP = LP2

» Lemma
e | P can be reformulated as an LP2 and vice versa.

e The problem size increases only by a constant factor.

» Proof:
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Geometric Interpretation

» Example:
e AX = b

e with (

\ 3r1 +x2+x3 =9

I3
e Minimize for x=0 the term c'x where

¢ =00 —1)
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Simplex Algorithm

» All solutions are in an intersection
e of hyper-planes (A x = b)
¢ and half-planes x=0

\ 3r1 +x2+x3 =9

» This is a simplex

» First construct a basis solution x on the
vertices of the simplex

e X;is called a basis variable
¢ which suffices Ax=b and x=0
¢ but is not optimal

- if x;=0 it is called degenerated L3

» Consider all edges of the simplex

e walk along the edge which improves the
solution

e until the next the next vertex
e Choose it as new basis solution
» Repeat until the optimum has been reached
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Intuition for the Simplex-Algorithm

C

A ‘;MQ 1w A ol{¢SCn.L;;e3 +LIQ ’hcmvfw'ac(
VQC+°“ J»(j) "H\-( L’VP&"'P/W'Q'
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Computing the Parallel Vectors

B A/

M= | o 3'4'4 O

)
?
14
}

\—-V-\Jblr
\_‘.\’\__z
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2D Example
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The Solution is in Sight

C?Z/VVW O? ".S a VCCf&V

f’)m q/((‘ To H\A 4 L\YP»-/:/W¢)
Wi are met Fhe gt dineof A

Ea o e—

erX s a 50(“‘L"0~' 401 /4)('-: b
T‘"o"\ QV""7 ﬂdl."’\-f)/O% Sa(vf'.q'ﬁ S/J&C<
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ves the direction

too many edge in
high dimensions
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Simplex Algorithm
input: m x n-matrix A,
m-~dim. vector b

Si m p I ex n-dim. vector c

{ I < aset {j1,...,Jm} of m positions with
AI o rith m independent column vectors in A
g B<—(aj1,...,ajm)
r«— B71b

stop <« false
while —stop do
{ e = (Cry--564,)
for all j € I do ¢; < ¢; —cgB ta;
optimal «— /\jQIB c; >0
stop < optimal
if —stop then
(Ve {jdls|g<o)
q < arbitrary element from V'
w «— B~ lq,
stop «— (w < 0)
if —stop then
{ Determine j, such that Zp — minlgigm{xw—jj | w; > 0]

Wp
.
P )
Wp
for all i € {1,...m} do z;, — z;, — sw;

B « replace column ¢ by column j,.

Ip — (Ip\14}) U {jp}
Jp < ¢

Distributed Storage Networks }
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Winter 2011/12 else return no lower bound
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Performance

» Worst case time behavior of the Simplex algorithm is
exponential

¢ A simplex can have an exponential number of edges

» For randomized inputs, the running time of Simplex is
polynomial on the expectation

» The Ellipsoid algorithm is a different method with
polynomial worst case behavior

e |n practice it is usually outperformed by the Simplex

algorithm
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ParTime = SeqTime with virtual
servers

»Reduce optimal solution for LP of ParTime
to the optimal solution of LP of SeqTime

— Combining capacity of many disks in | S S S A
parallel I : I - :
»Define new sequential virtual servers

S’y s S'm
—3ort s; such that 551 < |Sj+1
b(s;) — b(sj+1)

—Server s’; parallelizes servers s;,..,Sg

—\Virtual servers s’; are then sorted such
that b(s’)>b(s’;,+)

- Size of s’;:
7—1
e / /
J —
t; = > t; s =0b(s;) -t
7 ()
b(sj) - / 7
1=1
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Solve the LP of AvSeqTime

» Simple optimal greedy solution Documents sorted

==
E * according to p(d)
» Repeat until all documents are g <%y
assinged: o ds ||[[ae | I:>
¢ Assignh most popular document on ArLE
fastest sequential (virtual) server s | S ] S5
e Reduce the storage of the server by A .L/ .L'/ .E.L.L --eT
the document size and remove the S : - : : :
document : : : : '
ss el
S4

Virtual Server Utilization

81 . .
ISV EVRLEVRLEVAL >
Vi 'Va ' Va' Ve! Vs ‘
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Applications in SAN

» Object storage with different
popularity zones

® ¢.g. movies with varying popularities
over time

e Fragmentation is done automatically

* Includes dynamics for adding and
removing documents

e The same for servers

» Use different bandwidth
e Fach disk has different bandwidths

e Exporting different zone classes as
sequential servers
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From DHT to DHHT

» Distributed Heterogeneous Hash Table (DHHT)

e a straight-forward extension of the original DHT Do0 MO
o efficient, fair t t t = t t
» Linear Method ' '{l/‘ /3
e Nice pictures A ~
¢ Performs quite well &

e Needs copies for fairness, and O(log n)

partitions
» Logarithmic Method A
e Performs perfectly A ' (

* Needs O(log n) partitions if more than one data
item is used

¢ is optimal when combined with double hashing
» Applications of DHHT
e MANET, Peer-to-Peer-Networks

e SAN: optimize time with very simple assignment
rules
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