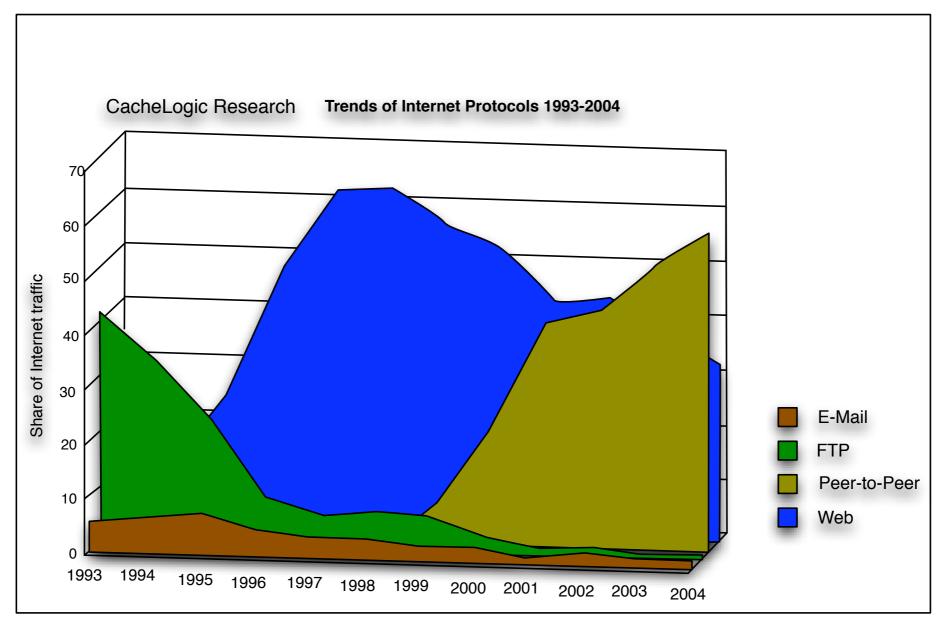


Distributed Storage Networks and Computer Forensics 10 Peer-to-Peer Storage

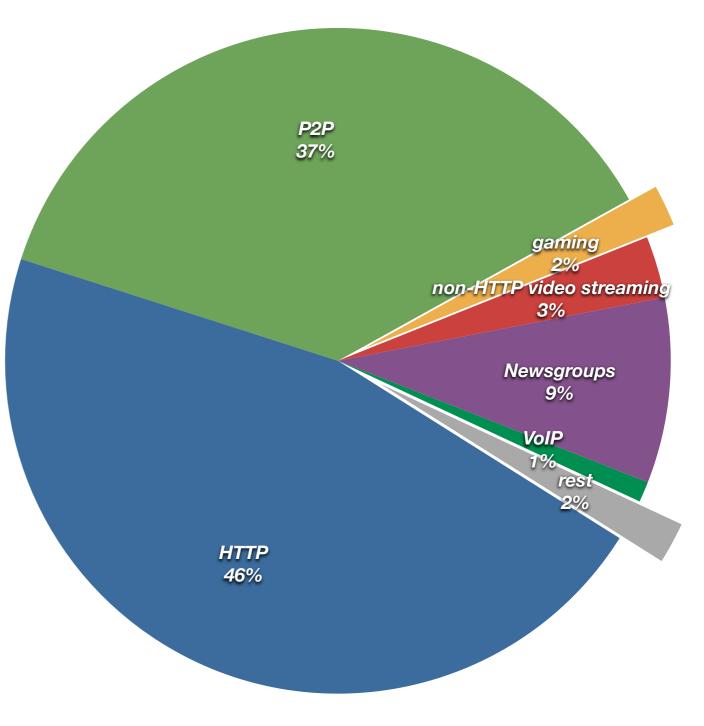
Christian Schindelhauer


University of Freiburg Technical Faculty Computer Networks and Telematics Winter Semester 2011/12

Outline

- Principles and history
- Algorithms and Methods
 - DHTs
 - Chord
 - Pastry and Tapestry
- P2P Storage Systems
 - PAST
 - Oceanstore
- Further Issues
 - Bandwidth
 - Anonymity, Security
 - Availability and Robustness

Global Internet Traffic Shares 1993-2004


Source: CacheLogic 2005

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Global Internet Traffic 2007

Ellacoya report (June 2007)

- worldwide HTTP traffic volume overtakes P2P after four years continues record
- Main reason: Youtube.com

Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Milestones P2P Systems

- Napster (1st version: 1999-2000)
- Gnutella (2000), Gnutella-2 (2002)
- Edonkey (2000)
 - later: Overnet usese Kademlia
- FreeNet (2000)
 - Anonymized download
- JXTA (2001)
 - Open source P2P network platform

FastTrack (2001)

- known from KaZaa, Morpheus, Grokster
- Bittorrent (2001)
 - only download, no search
- Skype (2003)
 - VoIP (voice over IP), Chat, Video

Milestones Theory

Distributed Hash-Tables (DHT) (1997)

- introduced for load balancing between web-servers
- CAN (2001)
 - efficient distributed DHT data structure for P2P networks
- Chord (2001)
 - efficient distributed P2P network with logarithmic search time
- Pastry/Tapestry (2001)
 - efficient distributed P2P network using Plaxton routing
- Kademlia (2002)
 - P2P-Lookup based on XOr-Metrik

Many more exciting approaches

• Viceroy, Distance-Halving, Koorde, Skip-Net, P-Grid, ...

Recent developments

- Network Coding for P2P
- Game theory in P2P
- Anonymity, Security

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

What is a P2P Network?

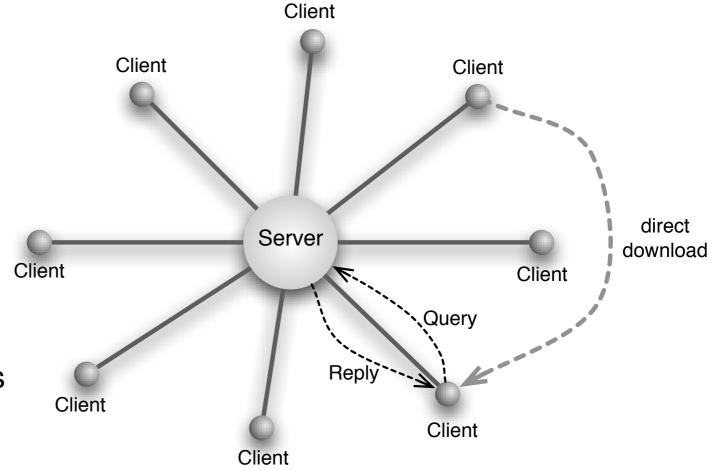
- What is P2P NOT?
 - a peer-to-peer network is *not a client-server network*
- Etymology: peer
 - from latin par = equal
 - one that is of equal standing with another
 - P2P, Peer-to-Peer: a relationship between equal partners
- Definition
 - a Peer-to-Peer Network is a communication network between computers in the Internet
 - without central control
 - and without reliable partners
- Observation
 - the Internet can be seen as a large P2P network

Napster

Shawn (Napster) Fanning

- published 1999 his beta version of the now legendary Napster P2P network
- File-sharing-System
- Used as mp3 distribution system
- In autumn 1999 Napster has been called download of the year
- Copyright infringement lawsuit of the music industry in June 2000
- End of 2000: cooperation deal
 - between Fanning and Bertelsmann Ecommerce
- Since then Napster is a commercial file-sharing platform

How Did Napster Work?

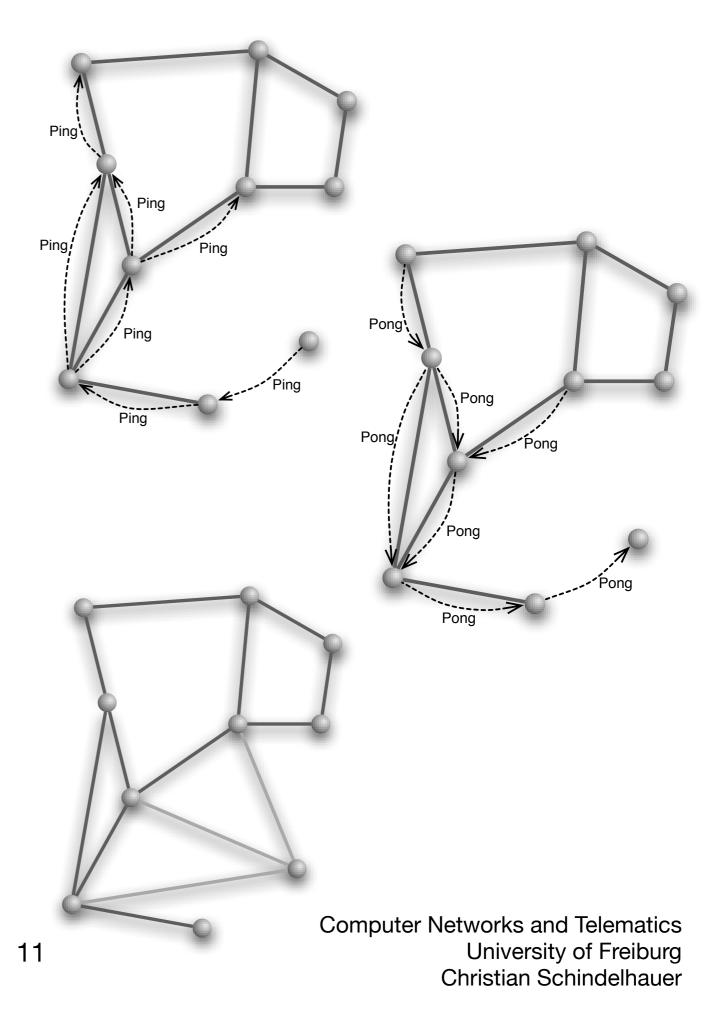

Client-Server

Server stores

- Index with meta-data
 - file name, date, etc
- table of connections of participating clients
- table of all files of participants

Query

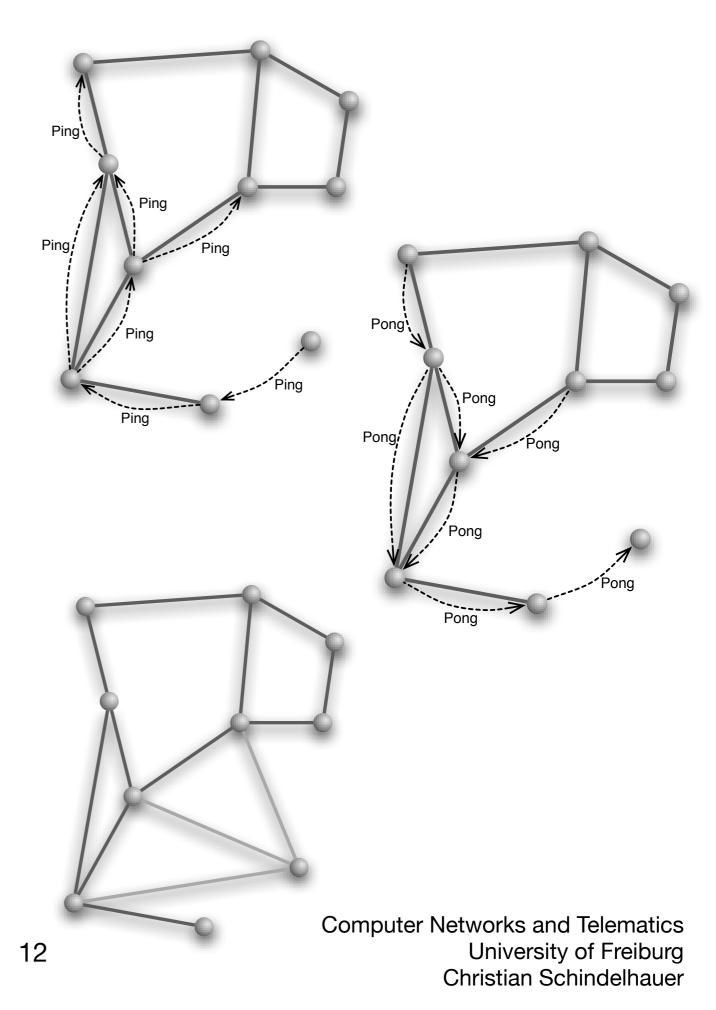
- client queries file name
- server looks up corresponding clients
- server replies the owner of the file
- querying client downloads the file from the file owning client


History of Gnutella

Gnutella

- was released in March 2000 by Justin Frankel and Tom Pepper from Nullsoft
- Since 1999 Nullsoft is owned by AOL
- File-Sharing system
 - Same goal as Napster
 - But without any central structures

Gnutella – Connecting

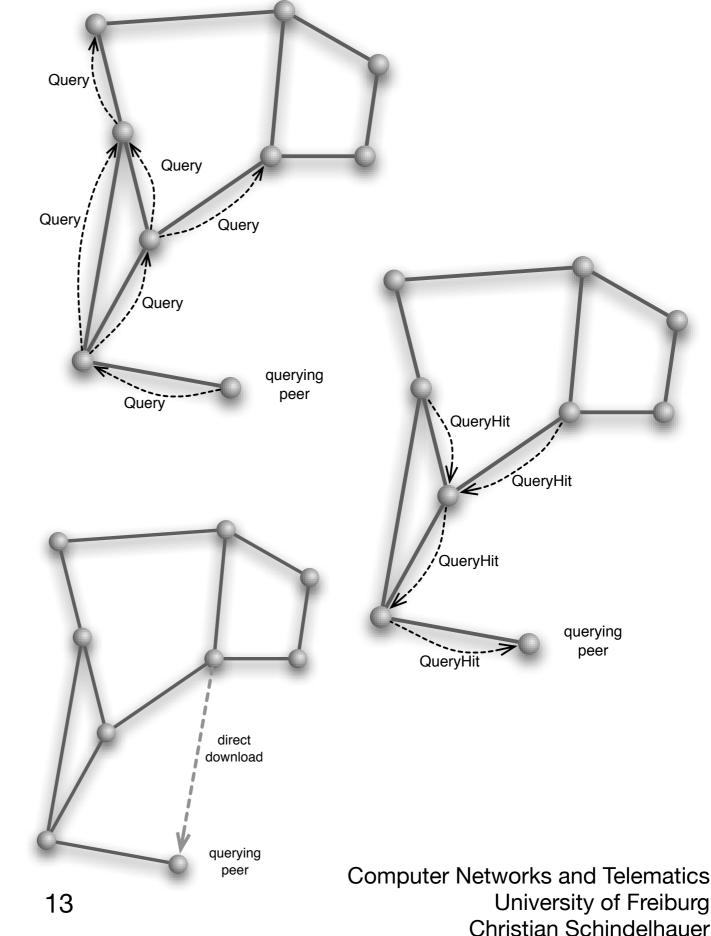

- Neighbor lists
 - Gnutella connects directly with other clients
 - the client software includes a list of usually online clients
 - the clients checks these clients until an active node has been found
 - an active client publishes its neighbor list
 - the query (ping) is forwarded to other nodes
 - the answer (pong) is sent back
 - neighbor lists are extended and stored
 - the number of the forwarding is limited (typically: five)

Gnutella – Connecting

Protokoll

- Ping
 - participants query for neighbors
 - are forwarded according for TTL steps (time to live)
- Pong
 - answers Ping
 - is forwarded backward on the query path
 - reports IP and port adress (socket pair)
 - number and size of available files

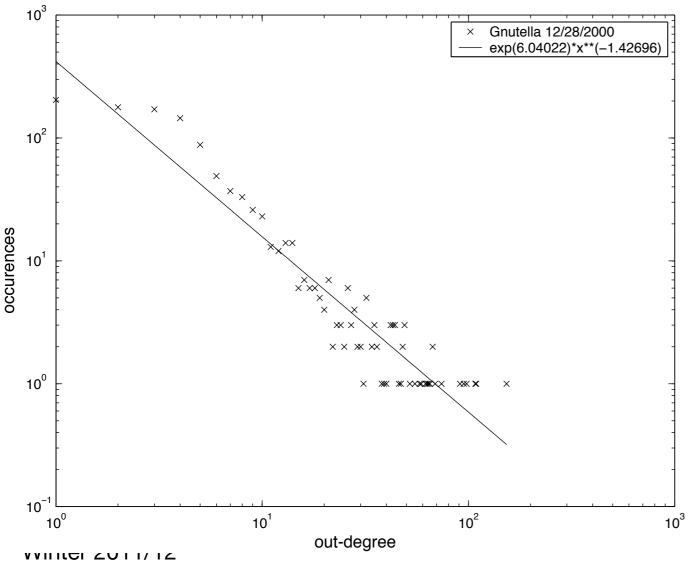
Gnutella – Query

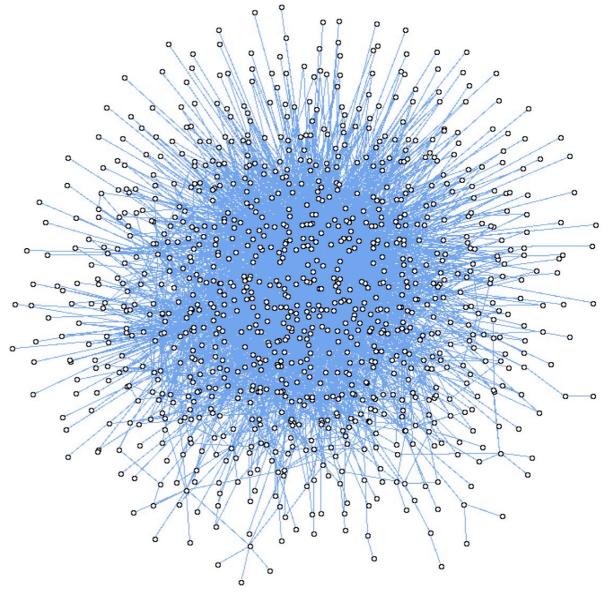

File Query

- are sent to all neighbors
- Neighbors forward to all neighbors
- until the maximum hop distance has been reached
 - TTL-entry (time to live)

Protocol

- Query
 - for file for at most TTL hops
- Query-hits
 - answers on the path backwards


If file has been found, then initiate direct download



Gnutella – Graph Structure

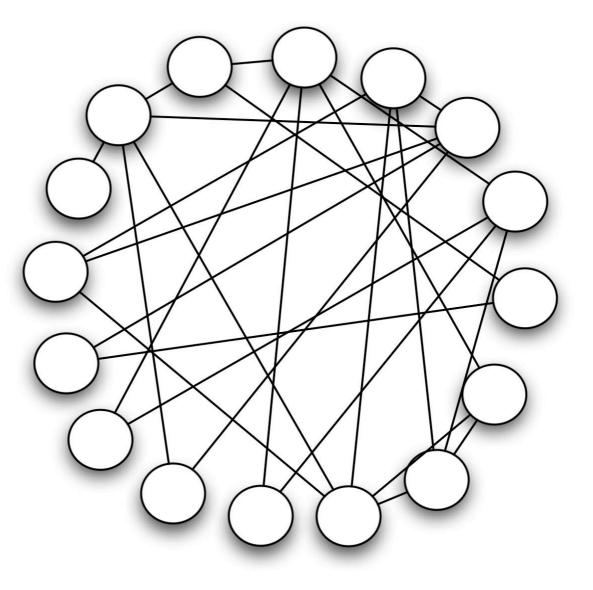
Graph structure

- constructed by random process
- underlies power law
- without control

Gnutella snapshot in 2000 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Why Gnutella Does Not Really Scale

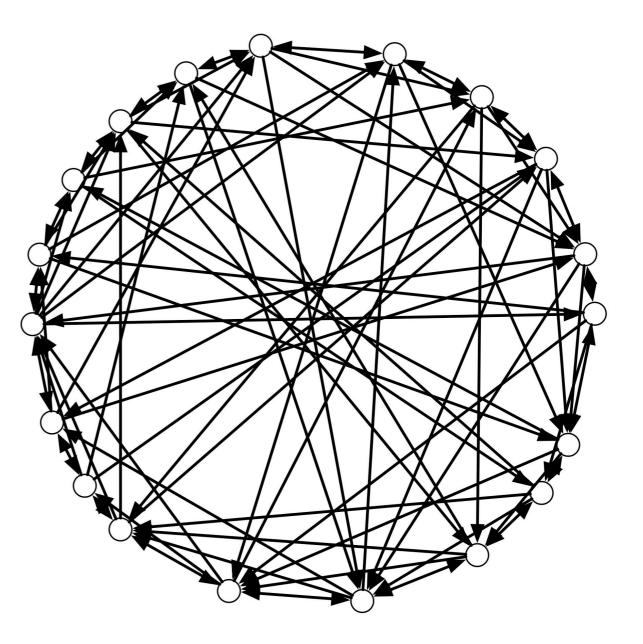
Gnutella


- graph structure is random
- degree of nodes is small
- small diameter
- strong connectivity

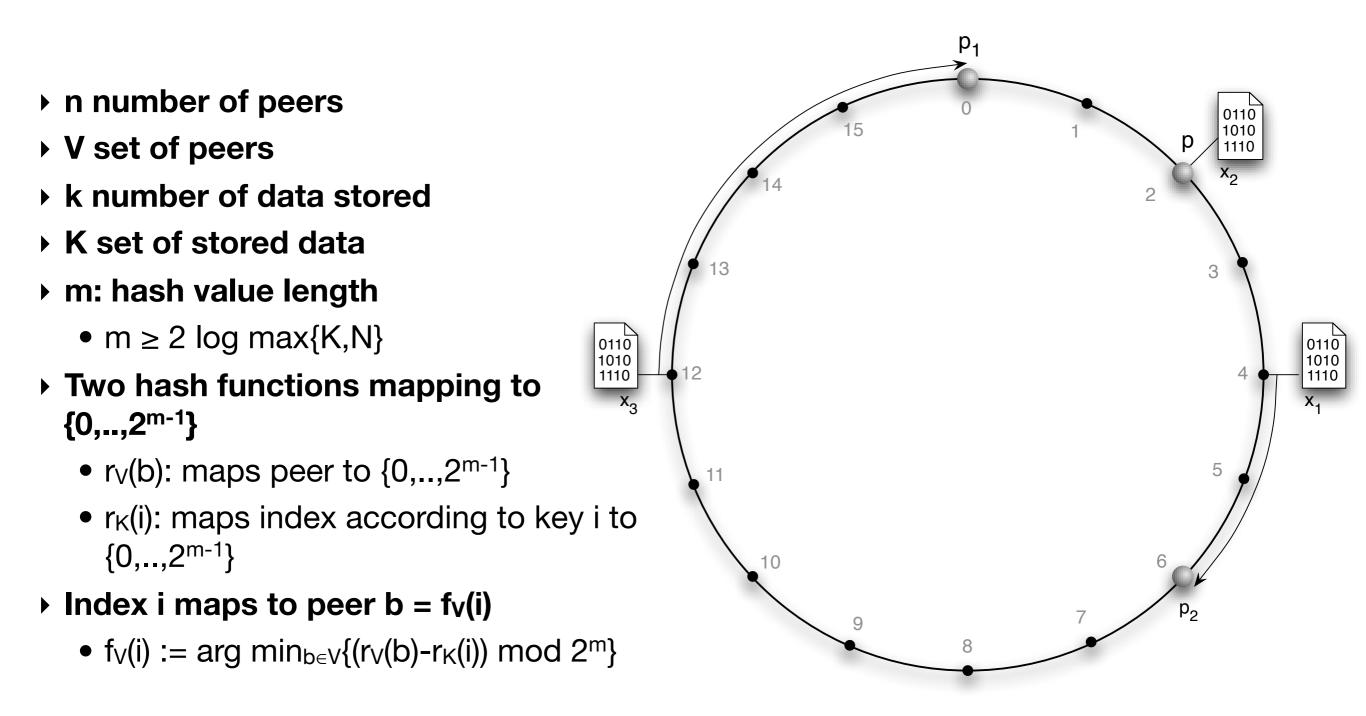
Lookup is expensive

 for finding an item the whole network must be searched

Gnutella's lookup does not scale


reason: no structure within the index storage

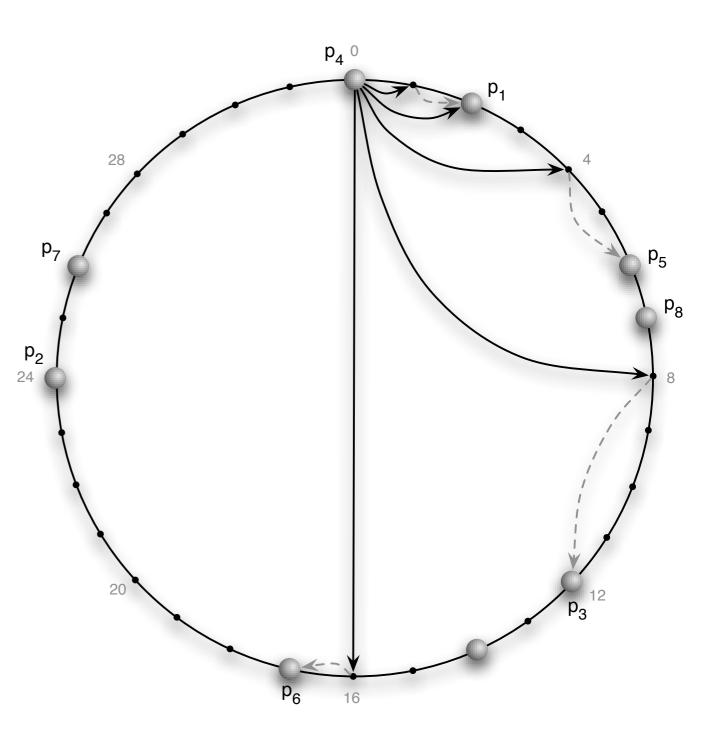
Computer Networks and Telematics University of Freiburg Christian Schindelhauer


Chord

- Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari Balakrishnan (2001)
- Distributed Hash Table
 - range {0,...,2^m-1}
 - for sufficient large m
- Network
 - ring-wise connections
 - shortcuts with exponential increasing distance

Computer Networks and Telematics University of Freiburg Christian Schindelhauer

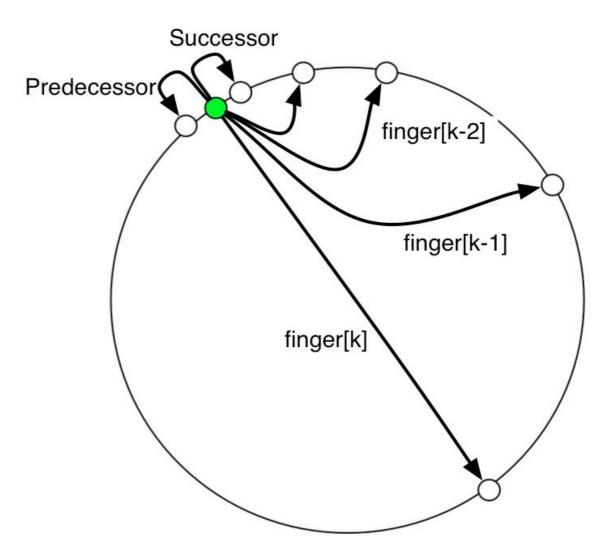
Chord as DHT



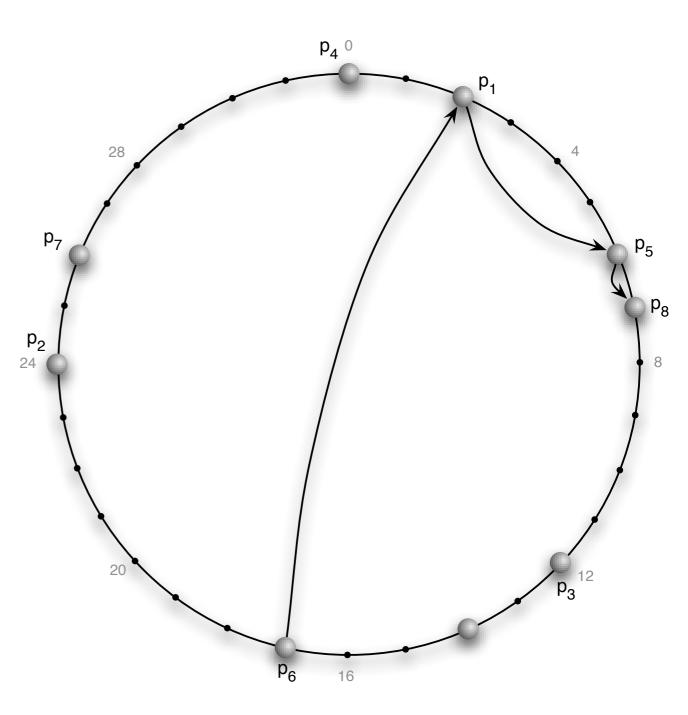
Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Pointer Structure of Chord

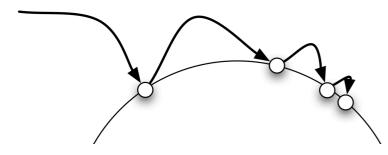
For each peer


- successor link on the ring
- predecessor link on the ring
- for all $i \in \{0, ..., m-1\}$
 - Finger[i] := the peer following the value r_V(b+2ⁱ)
- For small i the finger entries are the same
 - store only different entries
- Lemma
 - The number of different finger entries is O(log n) with high probability, i.e. 1-n^{-c}.

Computer Networks and Telematics University of Freiburg Christian Schindelhauer

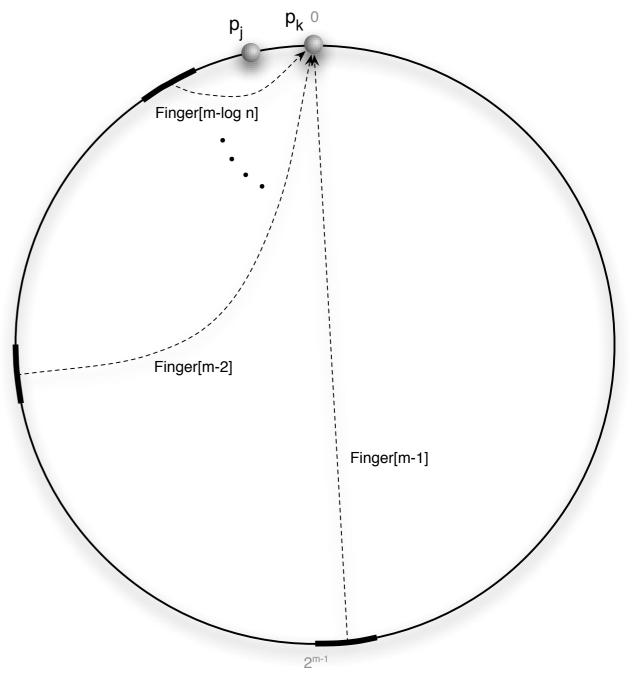

Data Structure of Chord

- For each peer
 - successor link on the ring
 - predecessor link on the ring
 - for all $i \in \{0,...,m-1\}$
 - Finger[i] := the peer following the value r_V(b+2ⁱ)
- For small i the finger entries are the same
 - store only different entries
- Chord
 - needs O(log n) hops for lookup
 - needs O(log² n) messages for inserting and erasing of peers



Lookup in Chord

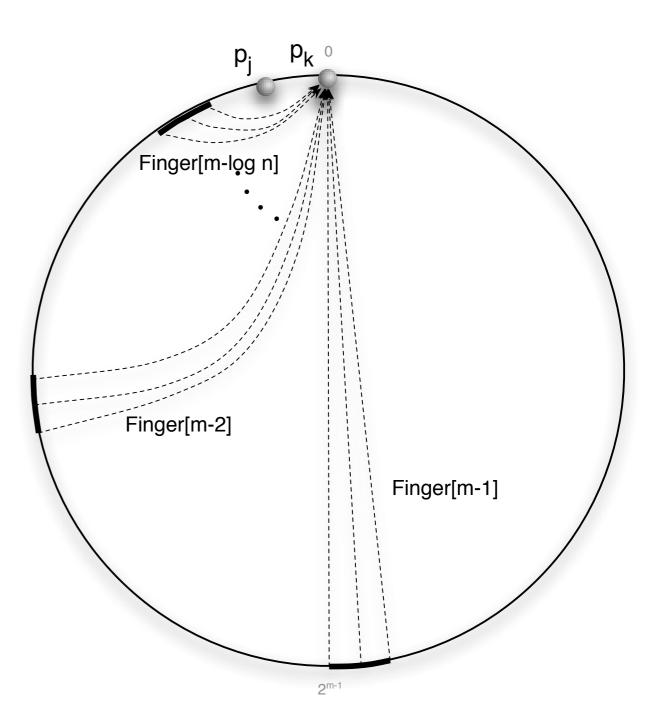
- Theorem
 - The Lookup in Chord needs O(log n) steps w.h.p.


Computer Networks and Telematics University of Freiburg Christian Schindelhauer

How Many Fingers?

Lemma

- The out-degree in Chord is O(log n) w.h.p.
- The in-degree in Chord is O(log²n) w.h.p.
- Theorem
 - For integrating a new peer into Chord only O(log² n) messages are necessary.


Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Distributed Storage Networks and Computer Forensics Winter 2011/12

Montag, 19. Dezember 11

Adding a Peer

- First find the target area in O(log n) steps
- The outgoing pointers are adopted from the predecessor and successor
 - the pointers of at most O(log n) neighbored peers must be adapted
- The in-degree of the new peer is O(log²n) w.h.p.
 - Lookup time for each of them
 - There are O(log n) groups of neighb ored peers
 - Hence, only O(log n) lookup steps with at most costs O(log n) must be used
 - Each update of has constant cost

Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Peer-to-Peer Networks

Pastry

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Pastry

Peter Druschel

- Rice University, Houston, Texas
- now head of Max-Planck-Institute for Computer Science, Saarbrücken/ Kaiserslautern
- Antony Rowstron
 - Microsoft Research, Cambridge, GB
- Developed in Cambridge (Microsoft Research)
- Pastry
 - Scalable, decentralized object location and routing for large scale peer-topeer-network
- PAST
 - A large-scale, persistent peer-to-peer storage utility
- Two names one P2P network
 - PAST is an application for Pastry enabling the full P2P data storage functionality
 - First, we concentrate on Pastry

Pastry Overview

Each peer has a 128-bit ID: nodeID

- unique and uniformly distributed
- e.g. use cryptographic function applied to IP-address

Routing

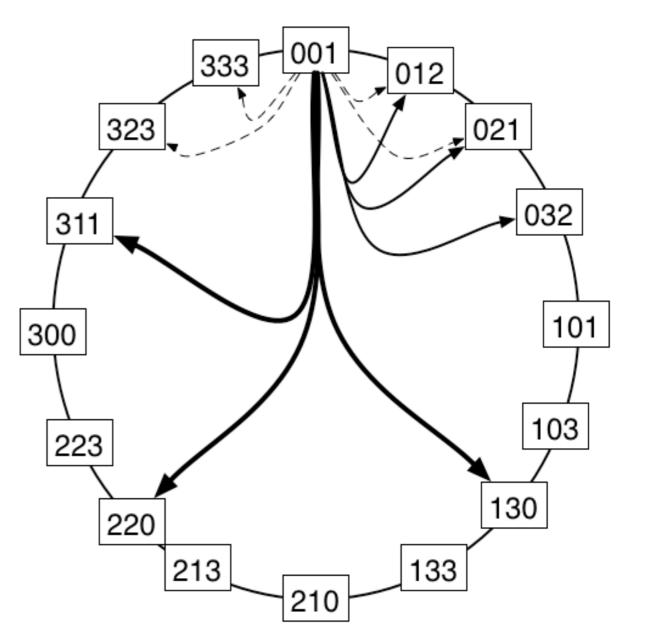
- Keys are matched to {0,1}¹²⁸
- According to a metric messages are distributed to the neighbor next to the target

Routing table has O(2^b(log n)/b) + ℓ entries

- n: number of peers
- *l*: configuration parameter
- b: word length

- typical: b= 4 (base 16),
 ℓ = 16
- message delivery is guaranteed as long as less than l/2 neighbored peers fail
- Inserting a peer and finding a key needs O((log n)/b) messages

Routing Table


- Nodeld presented in base 2^b
 - e.g. NodelD: 65A0BA13
- For each prefix p and letter x ∈ {0,...,2^b-1} add an peer of form px* to the routing table of NodeID, e.g.
 - b=4, 2^b=16
 - 15 entries for 0*,1*, .. F*
 - 15 entries for 60*, 61*,... 6F*
 - ...
 - if no peer of the form exists, then the entry remains empty
- Choose next neighbor according to a distance metric
 - metric results from the RTT (round trip time)
- In addition choose ℓ neighors
 - $\ell/2$ with next higher ID
 - $\ell/2$ with next lower ID

0	1	2	3	4	5		7	8	9	a	b	c	d	e	f
x	x	x	x	x	x	-	x	x	x	x	x	x	x	x	x
6	6	6	6	6		6	6	6	6	6	6	6	6	6	6
0	1	2	3	4		6	7	8	9	a	b	c	d	e	f
x	x	x	x	x		x	x	x	x	x	x	x	x	x	x
6	6	6	6	6	6	6	6	6	6		6	6	6	6	6
5	5	5	5	5	5	5	5	5	5		5	5	5	5	5
0	1	2	3	4	5	6	7	8	9		b	c	d	e	f
x	x	x	x	x	x	x	x	x	x		x	x	x	x	x
	-	-												\rightarrow	-
6		6	6	6	6	6	6	6	6	6	6	6	6	6	6
5		5	5	5	5	5	5	5	5	5	5	5	5	5	5
a		a	a	a	a	a	a	a	a	a	a	a	a	a	a
0		2	3	4	5	6	7	8	9	a	b	c	d	e	f
x		\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	x	\mathbf{x}	x	x	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	x

Routing Table

- Example b=2
- Routing Table
 - For each prefix p and letter x ∈ {0,...,2^b-1} add an peer of form px* to the routing table of NodelD
- + In addition choose ℓ neighors
 - $\ell/2$ with next higher ID
 - *l*/2 with next lower ID
- Observation
 - The leaf-set alone can be used to find a target
- Theorem
 - With high probability there are at most O(2^b (log n)/b) entries in each routing table

Distributed Storage Networks and Computer Forensics Winter 2011/12

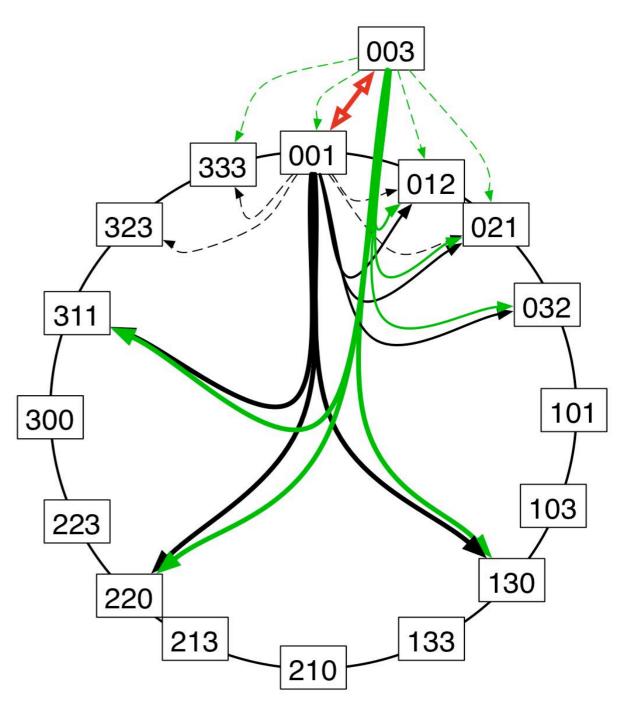
Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Routing Table

Theorem

- With high probability there are at most O(2^b (log n)/b) entries in each routing table
- Proof
 - The probability that a peer gets the same mdigit prefix is 2^{-bm}
 - The probability that a m-digit prefix is unused is $(1-2^{-bm})^n \leq e^{-n/2^{bm}}$
 - For m=c (log n)/b we get

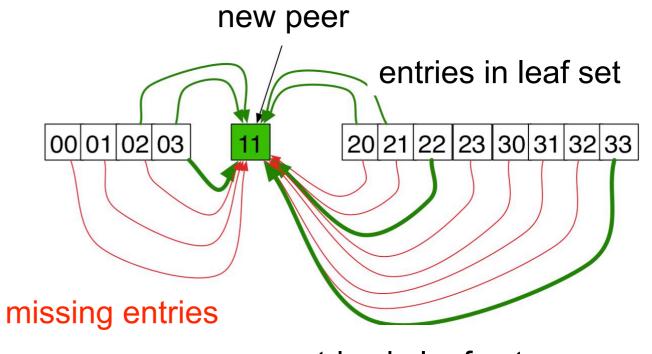
$$e^{-n/2^{bm}} \le e^{-n/2^{c\log n}}$$


$$\leq e^{-n/n^c} \leq e^{-n^{c-1}}$$

- With (extremely) high probability there is no peer with the same prefix of length (1+ε)(log n)/b
- Hence we have (1+ε)(log n)/b rows with 2^b-1 entries each

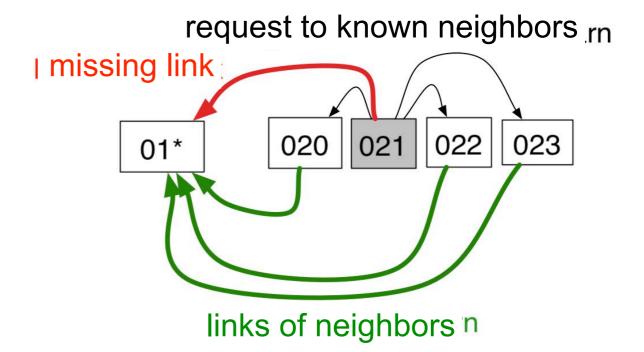
0	1	2	3	4	5		7	8	9	a	b	c	d	e	f
x	x	x	x	x	x		x	x	x	x	x	x	x	x	x
6	6	6	6	6		6	6	6	6	6	6	6	6	6	6
0	1	2	3	4		6	7	8	9	a	b	c	d	e	f
x	x	x	x	x		x	x	x	x	x	x	x	x	x	x
		-	-												
6	6	6	6	6	6	6	6	6	6		6	6	6	6	6
5	5	5	5	5	5	5	5	5	5		5	5	5	5	5
0	1	2	3	4	5	6	7	8	9		b	c	d	e	f
x	x	x	x	x	x	x	x	x	x		x	x	x	x	x
		-	-											-	-
6		6	6	6	6	6	6	6	6	6	6	6	6	6	6
5		5	5	5	5	5	5	5	5	5	5	5	5	5	5
a		a	a	a	a	a	a	a	a	a	a	a	a	a	a
0		2	3	4	5	6	7	8	9	a	b	c	d	e	f
x		\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	x	\mathbf{x}	x	\mathbf{x}	\mathbf{x}	\mathbf{x}	x	\mathbf{x}	x

A Peer Enters

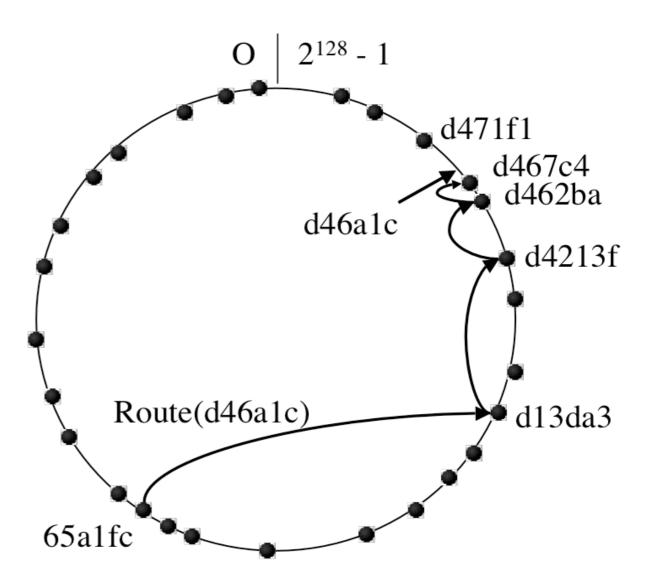

- New node x sends message to the node z with the longest common prefix p
- ➤ x receives
 - routing table of z
 - leaf set of z
- z updates leaf-set
- ⋆ x informs *l*-leaf set
- x informs peers in routing table
 - with same prefix p (if $\ell/2 < 2^{b}$)
- Numbor of messages for adding a peer
 - ℓ messages to the leaf-set
 - expected (2^b ℓ/2) messages to nodes with common prefix
 - one message to z with answer

Computer Networks and Telematics University of Freiburg Christian Schindelhauer

When the Entry-Operation Errs


- Inheriting the next neighbor routing table does not allows work perfectly
- Example
 - If no peer with 1* exists then all other peers have to point to the new node
 - Inserting 11
 - 03 knows from its routing table
 - 22,33
 - 00,01,02
 - 02 knows from the leaf-set
 - 01,02,20,21
- 11 cannot add all necessary links to the routing tables

necessary entries in leaf set


Missing Entries in the Routing Table

- Assume the entry Rⁱ is missing at peer
 - j-th row and i-th column of the routing table
- This is noticed if a message of a peer with such a prefix is received
- This may also happen if a peer leaves the network
- Contact peers in the same row
 - if they know a peer this address is copied
- If this fails then perform routing to the missing link

Lookup

- Compute the target ID using the hash function
- \blacktriangleright If the address is within the $\ell\text{-leaf}$ set
 - the message is sent directly
 - or it discovers that the target is missing
- Else use the address in the routing table to forward the mesage
- If this fails take best fit from all addresses

Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Lookup in Detail

- ► L: *l*-leafset
- R: routing table
- M: nodes in the vicinity of D (according to RTT)
- D: key
- A: nodeID of current peer
- Rⁱ_l: j-th row and i-th column of the routing table
- Li: numbering of the leaf set
- D_i: i-th digit of key D
- shl(A): length of the largest common prefix of A and D (shared header length)

- (1) if $(L_{-\lfloor \lfloor L \rfloor/2 \rfloor} \leq D \leq L_{\lfloor \lfloor L \rfloor/2 \rfloor})$ {
- (2) // D is within range of our leaf set
- (3) forward to L_i , s.th. $|D L_i|$ is minimal;
- $(4) \quad \} else \{$
- (5) // use the routing table
- (6) Let l = shl(D, A);
- (7) if $(R_l^{D_l} \neq null)$ {
- (8) forward to $R_l^{D_l}$;
- (9)
- (10) else {

}

- (11) // rare case
- (12) forward to $T \in L \cup R \cup M$, s.th.
 - $shl(T, D) \ge l,$

$$(14) |T-D| < |A-D|$$

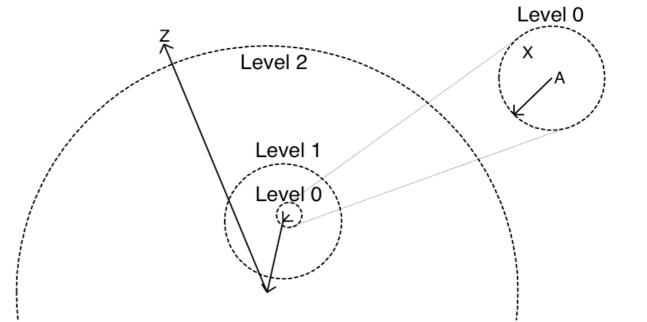
- (15) }
- (16)

(13)

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Routing – Discussion

- If the Routing-Table is correct
 - routing needs O((log n)/b) messages
- As long as the leaf-set is correct
 - routing needs O(n/l) messages
 - unrealistic worst case since even damaged routing tables allow dramatic speedup
- Routing does not use the real distances
 - M is used only if errors in the routing table occur
 - using locality improvements are possible
- Thus, Pastry uses heuristics for improving the lookup time
 - these are applied to the last, most expensive, hops

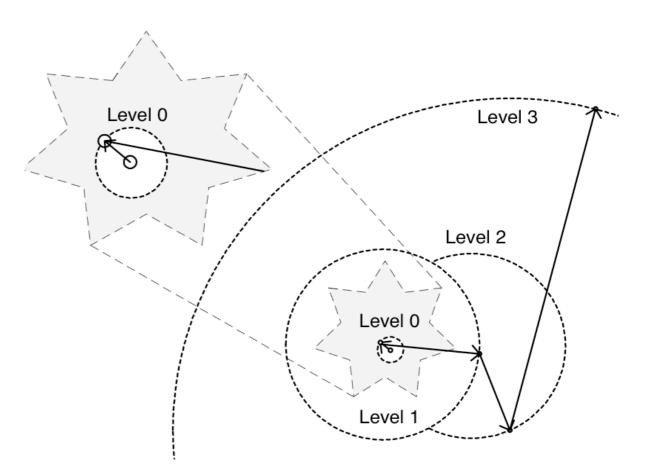

Localization of the k Nearest Peers

- Leaf-set peers are not near, e.g.
 - New Zealand, California, India, ...
- TCP protocol measures latency
 - latencies (RTT) can define a metric
 - this forms the foundation for finding the nearest peers
- All methods of Pastry are based on heuristics
 - i.e. no rigorous (mathematical) proof of efficiency
- Assumption: metric is Euclidean

Locality in the Routing Table

Assumption

- When a peer is inserted the peers contacts a near peer
- All peers have optimized routing tables
- But:
 - The first contact is not necessary near according to the node-ID
- Ist step
 - Copy entries of the first row of the routing table of P
 - good approximation because of the triangle inequality (metric)
- > 2nd step
 - Contact fitting peer p' of p with the same first letter
 - Again the entries are relatively close
- Repeat these steps until all entries are updated

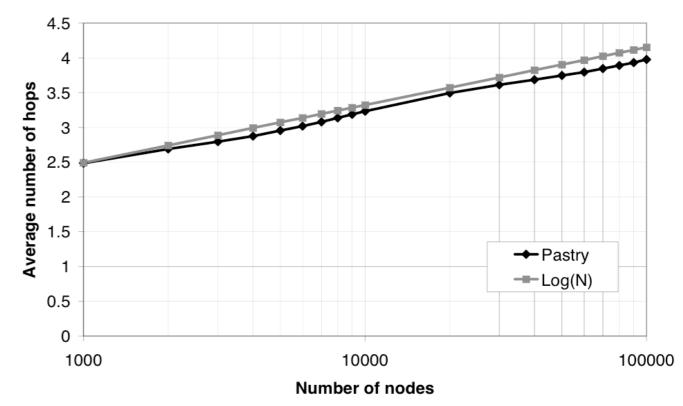

Locality in the Routing Table

In the best case

- each entry in the routing table is optimal w.r.t. distance metric
- this does not lead to the shortest path

There is hope for short lookup times

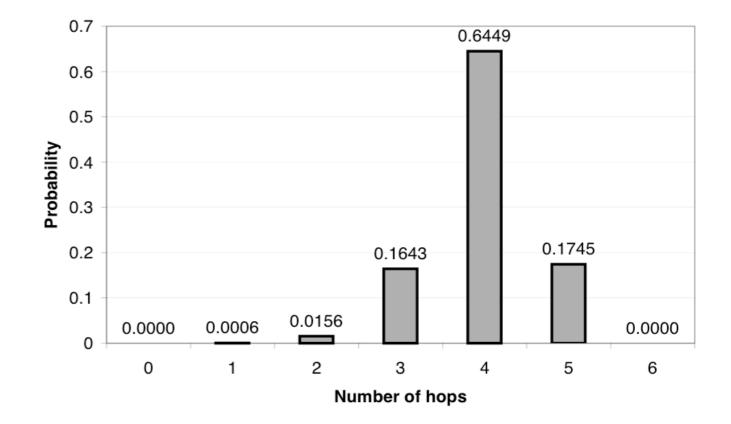
- with the length of the common prefix the latency metric grows exponentially
- the last hops are the most expensive ones
- here the leaf-set entries help


Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Localization of Near Nodes

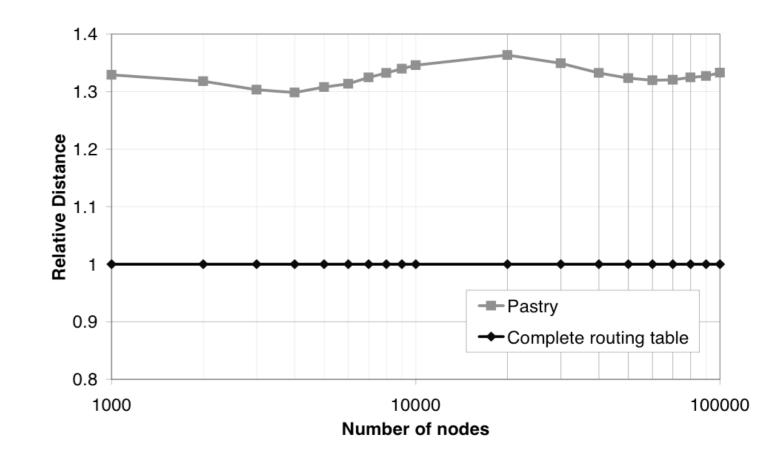
- Node-ID metric and latency metric are not compatible
- If data is replicated on k peers then peers with similar Node-ID might be missed
- Here, a heuristic is used
- Experiments validate this approach

Experimental Results – Scalability


- Parameter b=4, I=16, M=32
- In this experiment the hop distance grows logarithmically with the number of nodes
- The analysis predicts O(log n)
- Fits well

Distributed Storage Networks and Computer Forensics Winter 2011/12

Experimental Results Distribution of Hops


- Parameter b=4, I=16, M=32, n = 100,000
- Result
 - deviation from the expected hop distance is extremely small
- Analysis predicts difference with extremely small probability
 - fits well

Distributed Storage Networks and Computer Forensics Winter 2011/12

Experimental Results – Latency

- Parameter b=4, I=16, M=3
- Compared to the shortest path astonishingly small
 - seems to be constant

Distributed Storage Networks and Computer Forensics Winter 2011/12

Distributed Storage

Tapestry

Zhao, Kubiatowicz und Joseph (2001)

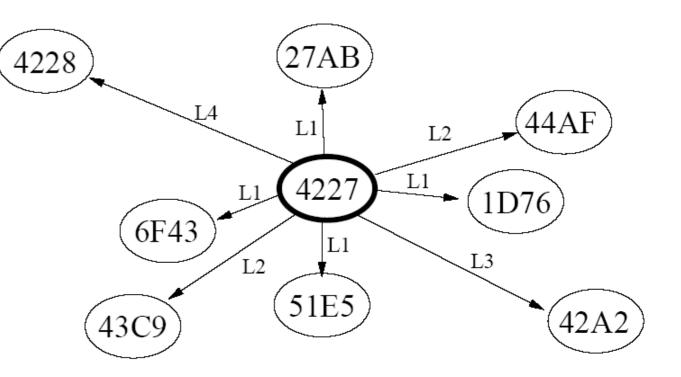
Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Montag, 19. Dezember 11

Tapestry

Objects and Peers are identified by

- Objekt-IDs (Globally Unique Identifiers GUIDs) and
- Peer-IDs
- ► IDs
 - are computed by hash functions
 - like CAN or Chord
 - are strings on basis B
 - B=16 (hexadecimal system)

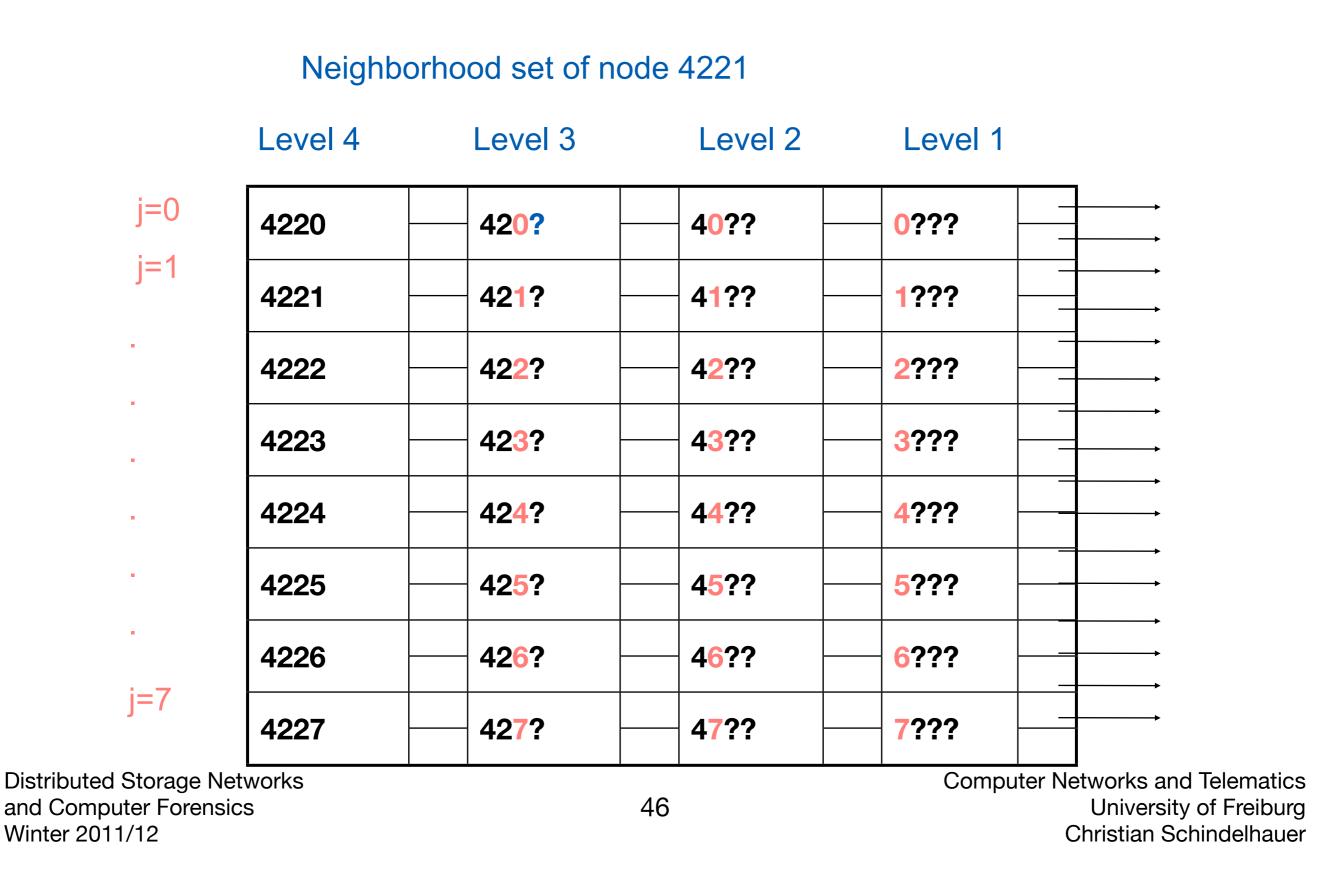

Neighborhood of a Peer (1)

Every peer A maintains for each prefix x of the Peer-ID

- if a link to another peer sharing this Prefix x
- i.e. peer with ID B=xy has a neighbor A, if xy´=A for some y, y´

Links sorted according levels

- the level denotes the length of the common prefix
- Level L = |x|+1



Distributed Storage Networks and Computer Forensics Winter 2011/12

Neighborhood Set (2)

- For each prefix x and all letters j of the peer with ID A
 - establish a link to a node with prefix xj within the neighboorhood set $N_{x,i}^A$
- Peer with Node-ID A has b |A| neighborhood sets
- The neighborhood set of contains all nodes with prefix sj
 - Nodes of this set are denoted by (x,j)

Example of Neighborhood Sets

Links

 For each neighborhood set at most k Links are maintained

$$k \ge 1 : \left| N_{x,j}^{A} \right| \le k$$

- Note:
 - some neighborhood sets are empty

Properties of Neighborhood Sets

- Consistency
 - If $N_{x,j}^A = \emptyset$ for any A
 - then there are no (x,j) peers in the network
 - this is called a hole in the routing table of level |x|+1 with letter j
- Network is always connected

. . .

• Routing can be done by following the letters of the ID b₁b₂...b_n

$$\begin{split} & N_{\phi,b_1}^A & \text{1st hop to node A}_1 \\ & N_{b_1,b_2}^{A_1} & \text{2nd hop to node A}_2 \\ & N_{b_1ob_2,b_3}^{A_2} & \text{3rd hop to node A}_3 \end{split}$$

Distributed Storage Networks and Computer Forensics Winter 2011/12

Locality

• Metric

- e.g. given by the latency between nodes
- Primary node of a neighborhood set N^A
 - The closest node (according to the metric) in the neighborhood set of A is called the primary node

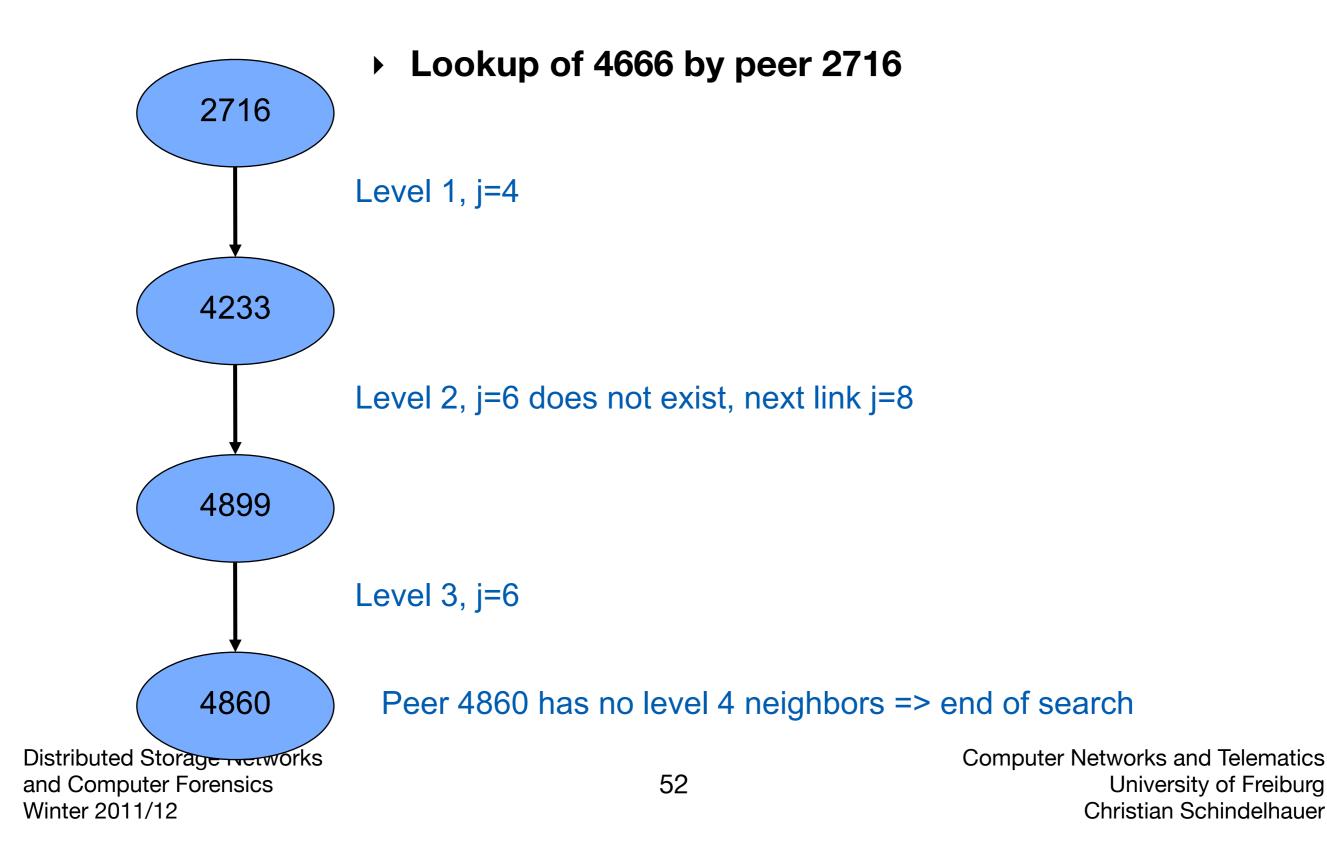
Secondary node

• the second closest node in the neighborhood set

Routing table

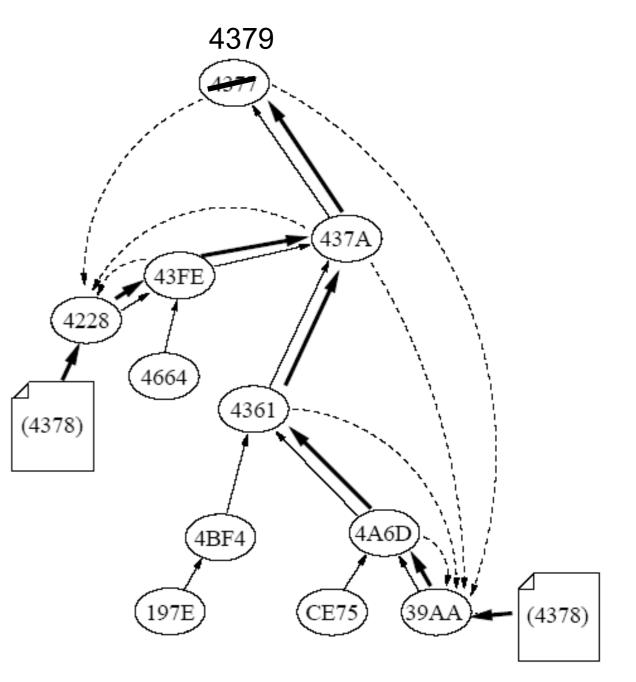
has primary and secondary node of the neighborhood table

Root Node


- Object with ID Y should stored by a so-called Root Node with this ID
- If this ID does not exist then a deterministic choice computes the next best choice sharing the greatest commen prefix

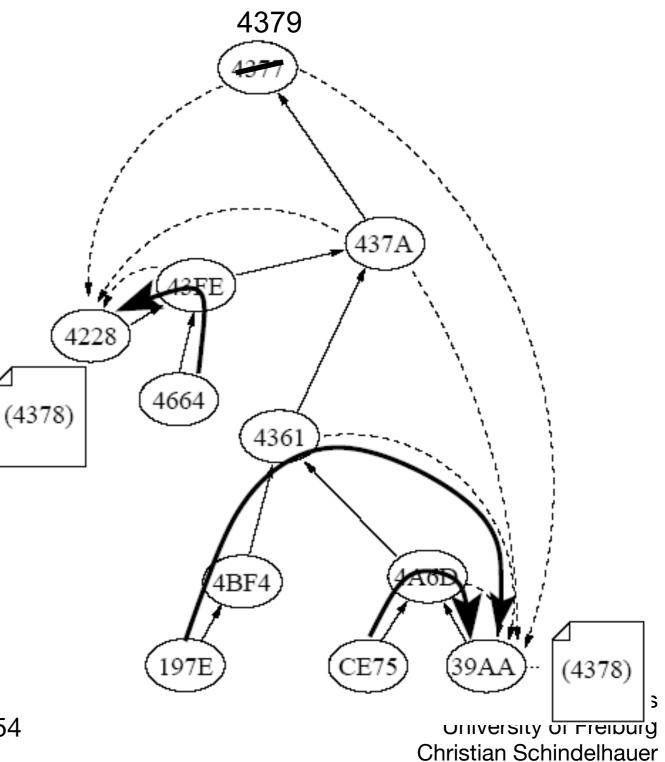
Surrogate Routing

Surrogate Routing


- compute a surrogate (replacement root node)
- If (x,j) is a hole, then choose (x,j+1),(x,j+2),...,(x,B),(x, 0), ..., (x,j-1) until a node is found
- Continue search in the next higher if no node has been found

Example: Surrogate Routing

Publishing Objects


- Peers offering an object (storage servers)
 - send message to the root node
- All nodes along the search path store object pointers to the storage server

Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Lookup

- Choose the root node of Y
- Send a message to this node
 - using primary nodes
- Abort search if an object link has been found
 - then send message to the storage server

Fault Tolerance

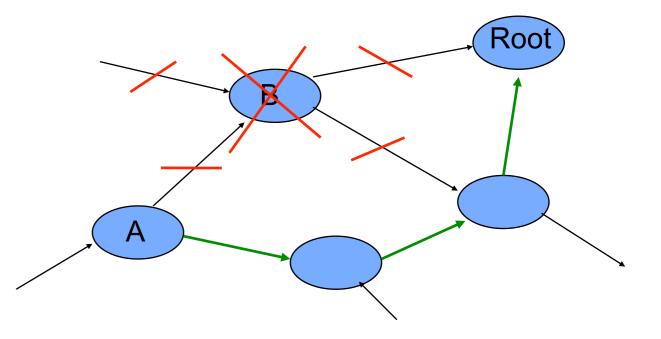
Copies of object IDs

- use different hash functions for multiple root nodes for objects
- failed searches can be repeated with different root nodes
- Soft State Pointer
 - links of objects are erased after a designated time
 - storage servers have to republish
 - prevents dead links
 - new peers receive fresh information

Surrogate Routing

Theorem

 Routing in Tapestry needs O(log n) hops with high probability


Adding Peers

Perform lookup in the network for the own ID

- every message is acknowledged
- send message to all neighbors with fitting prefix,
 - Acknowledged Multicast Algorithm
- Copy neighborhood tables of surrogate peer
- Contact peers with holes in the routing tables
 - so they can add the entry
 - for this perform multicast algorithm for finding such peers

Leaving of Peers

- Peer A notices that peer B has left
- Erase B from routing table
 - Problem holes in the network can occur
- Solution: Acknowledged Multicast Algorithm
- Republish all object with next hop to root peer B

Pastry versus Tapestry

Both use the same routing principle

- Plaxton, Rajamaran und Richa
- Generalization of routing on the hyper-cube

• Tapestry

- is not completely self-organizing
- takes care of the consistency of routing table
- is analytically understood and has provable performance

Pastry

- Heuristic methods to take care of leaving peers
- More practical (less messages)
- Leaf-sets provide also robustness

Distributed Storage **Past** Druschel, Rowstron 2001

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Montag, 19. Dezember 11

PAST

PAST: A large-scale, persistent peer-to-peer storage utility

- by Peter Druschel (Rice University, Houston now Max-Planck-Institut, Saarbrücken/Kaiserlautern)
- and Antony Rowstron (Microsoft Research)
- Literature
 - A. Rowstron and P. Druschel, "Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility", 18th ACM SOSP'01, 2001.
 - all pictures from this paper
 - P. Druschel and A. Rowstron, "PAST: A large-scale, persistent peer-to-peer storage utility", HotOS VIII, May 2001.

Goals of PAST

Peer-to-Peer based Internet Storage

- on top of Pastry
- Goals
 - File based storage
 - High availability of data
 - Persistent storage
 - Scalability
 - Efficient usage of resources

Motivation

- Multiple, diverse nodes in the Internet can be used
 - safety by different locations
- No complicated backup
 - No additional backup devices
 - No mirroring
 - No RAID or SAN systems with special hardware
- Joint use of storage
 - for sharing files
 - for publishing documents
- Overcome local storage and data safety limitations

Interface of PAST

Create:

```
fileId = Insert(name, owner-
credentials, k, file)
```

- stores a file at a user-specified number k of divers nodes within the PAST network
- produces a 160 bit ID which identifies the file (via SHA-1)

Lookup:

- file = Lookup(fileId)
- reliably retrieves a copy of the file identified fileId

Reclaim:

```
Reclaim(fileId, owner-credentials)
```

 reclaims the storage occupied by the k copies of the file identified by fileId

Other operations do not exist:

- No erase
 - to avoid complex agreement protocols
- No write or rename
 - to avoid write conflicts
- No group right management
 - to avoid user, group managements
- No list files, file information, etc.
- Such operations must be provided by additional layer

Relevant Parts of Pastry

Leafset:

- Neighbors on the ring
- Routing Table
 - Nodes for each prefix + 1 other letter
- Neighborhood set
 - set of nodes which have small TTL

Nodeld 10233102			
Leaf set	SMALLER	LARGER	
10233033	10233021	10233120	10233122
10233001	10233000	10233230	10233232
Routing table			
-0-2212102	1-1-301233	<u>-2-2301203</u> 1-2-230203	-3-1203203
10-0-31203	10-1-32102	2	10-3-23302
102-0-0230	102-1-1302	102-2-2302	3
1023-0-322	1023-1-000	1023-2-121	3
10233-0-01	1	10233-2-32	
0		102331-2-0	
		2	
Neighborhood set			
13021022	10200230	11301233	31301233
02212102	22301203	31203203	33213321

Interfaces of Pastry

route(M, X):

- route message M to node with nodeld numerically closest to X
- deliver(M):
 - deliver message M to application
- forwarding(M, X):
 - message M is being forwarded towards key X
- newLeaf(L):
 - report change in leaf set L to application

Insert Request Operation

Compute fileId by hashing

- file name
- public key of client
- some random numbers, called salt
- Storage (k x filesize)
 - is debited against client's quota

File certificate

- is produced and signed with owner's private key
- contains fileID, SHA-1 hash of file's content, replciation factor k, the random salt, creation date, etc.

- File and certificate are routed via Pastry
 - to node responsible for fileID
- When it arrives in one node of the k nodes close to the fileId
 - the node checks the validity of the file
 - it is duplicated to all other k-1 nodes numerically close to fileId
- When all k nodes have accepted a copy
 - Each nodes sends store receipt is send to the owner
- If something goes wrong an error message is sent back
 - and nothing stored

Lookup

- Client sends message with requested fileId into the Pastry network
- The first node storing the file answers
 - no further routing
- The node sends back the file
- Locality property of Pastry helps to send a close-by copy of a file

Reclaim

- Client's nodes sends reclaim certificate
 - allowing the storing nodes to check that the claim is authentificated
- Each node sends a reclaim receipt
- The client sends this recept to the retrieve the storage from the quota management

Security

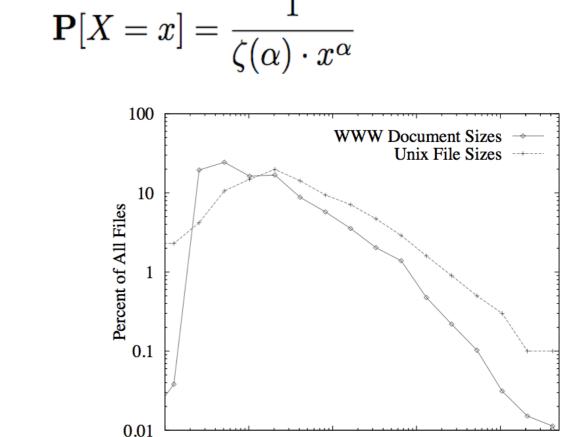
Smartcard

- for PAST users which want to store files
- generates and verifies all certificates
- maintain the storage quotas
- ensure the integrity of nodeID and fileID assignment
- Users/nodes without smartcard
 - can read and serve as storage servers
- Randomized routing
 - prevents intersection of messages
- Malicious nodes only have local influence

Storage Management

Goals

- Utilization of all storage
- Storage balancing
- Providing k file replicas
- Methods
 - Replica diversion
 - exception to storing replicas nodes in the leafset
 - File diversion
 - if the local nodes are full all replicas are stored at different locations


Causes of Storage Load Imbalance

- Statistical variation
 - birthday paradoxon (on a weaker scale)
- High variance of the size distribution
 - Typical heavy-tail distribution, e.g. Pareto distribution
- Different storage capacity of PAST nodes

Heavy Tail Distribution

- ► Discrete Pareto Distribution for x ∈ {1,2,3,...}
 - with constant factor $\zeta(\alpha) = \sum_{i=1}^{\infty} \frac{1}{i^{\alpha}}$
- Heavy tail
 - only for small k moments E[X^k] are defined
 - Expectation is defined only if $\alpha > 2$
 - Variance and $E[X^2]$ only exist if $\alpha > 3$
 - $E[X^k]$ is defined ony if a>k+1
- Often observed:
 - Distribution of wealth, sizes of towns, frequency of words, length of molecules, ...,
 - file length, WWW documents
 - Heavy-Tailed Probability Distributions in the World Wide Web, Crovella et al. 1996

Montag, 19. Dezember 11

10000

Size in Bytes

100000

1e+06

100

1000

Per-Node Storage

• Assumption:

- Storage of nodes differ by at most a factor of 100
- Large scale storage
 - must be inserted as multiple PAST nodes
- Storage control:
 - if a node storage is too large it is asked to split and rejoin
 - if a node storage is too small it is rejected

Replica Diversion

The first node close to the fileId checks whether it can store the file

- if yes, it does and sends the store receipt
- If a node A cannot store the file, it tries replica diversion
 - A chooses a node B in its leaf set which is not among the k closest asks B to store the copy
 - If B accepts, A stores a pointer to B and sends a store receipt
- When A or B fails then the replica is inaccessible
 - failure probability is doubled

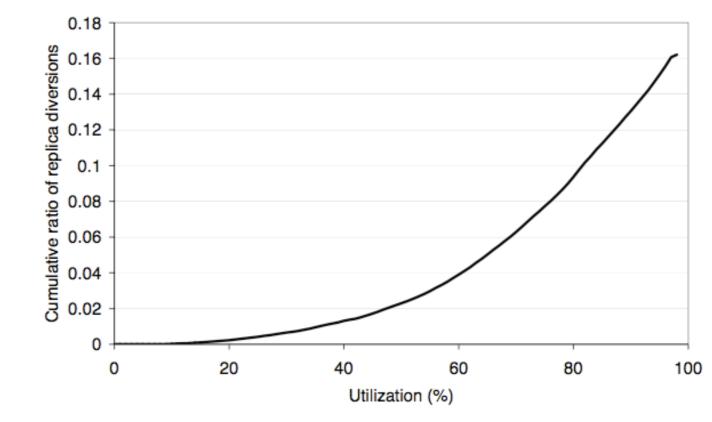


Figure 5: Cumulative ratio of replica diversions versus storage utilization, when $t_{pri} = 0.1$ and $t_{div} = 0.05$.

Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Policies for Replica Diversion

Acceptance of replicas at a node

- If (size of a file)/(remaining free space) > t then reject the file
 - for different t`s for close nodes (t_{pri}) and far nodes (t_{div}) , where $t_{pri} > t_{div}$
- discriminates large files and far storage
- Selecting a node to store a diverted replica
 - in the leaf set and
 - not in the k nodes closest to the fileId

- do not hold a diverted replica of the same file
- Deciding when to divert a file to different part of the Pastry ring
 - If one of the k nodes does not find a proxy node
 - then it sends a reject message
 - and all nodes for the replicas discard the file

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

File Diversion

- If k nodes close to the chosen fileId
 - cannot store the file
 - nor divert the replicas locally in the leafset
- then an error message is sent to the client
- The client generates a new fileId using different salt
 - and repeats the insert operation up to 3 times
 - then the operation is aborted and a failure is reported to the application
- Possibly the application retries with small fragments of the file

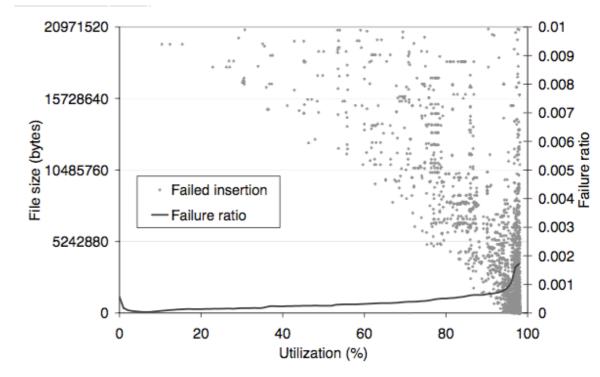


Figure 7: File insertion failures versus storage utilization for the filesystem workload, when $t_{pri} = 0.1$, $t_{div} = 0.05$.

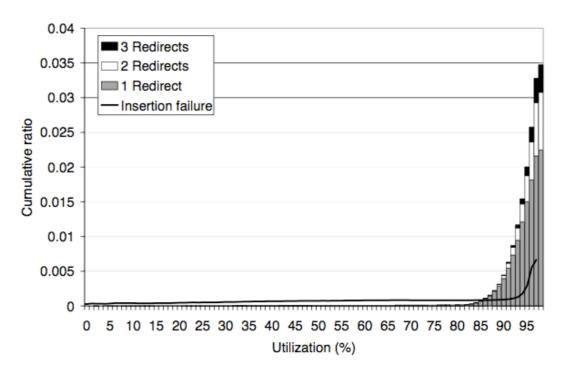


Figure 4: Ratio of file diversions and cumulative insertion failures versus storage utilization, $t_{pri} = 0.1$ and $t_{div} = 0.05$.

Maintaining Replicas

- Pastry protocols checks leaf set periodically
- Node failure has been recognized
 - if a node is unresponsive for some certain time
 - Pastry triggers adjustment of the leaf set
 - PAST redistributes replicas
 - if the new neighbor is too full, then other nodes in the nodes will be uses via replica diversion

When a new node arrives

- files are not moved, but pointers adjusted (replica diversion)
- because of ratio of storage to bandwidth

File Encoding

- k replicas is not the best redundancy strategy
- Using a Reed-Solomon encoding
 - with m additional check sum blocks to n original data blocks
 - reduces the storage overhead to (m+n)/n times the file size
 - if all m+n shares are distributed over different nodes
 - possibly speeds upt the access spee
- > PAST
 - does NOT use any such encoding techniques

Caching

Goal:

- Minimize fetch distance
- Maximize query throughput
- Balance the query load

Replicas provide these features

- Highly popular files may demand many more replicas
 - this is provided by cache management
- PAST nodes use "unused" portion to cache files
 - cached copies can be erased at any time

- e.g. for storing primary of redirected replicas
- When a file is routed through a node during lookup or insert it is inserted into the local cache
- Cache replacement policy: GreedyDual-Size
 - considers aging, file size and costs of a file

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Experimental Results Caching

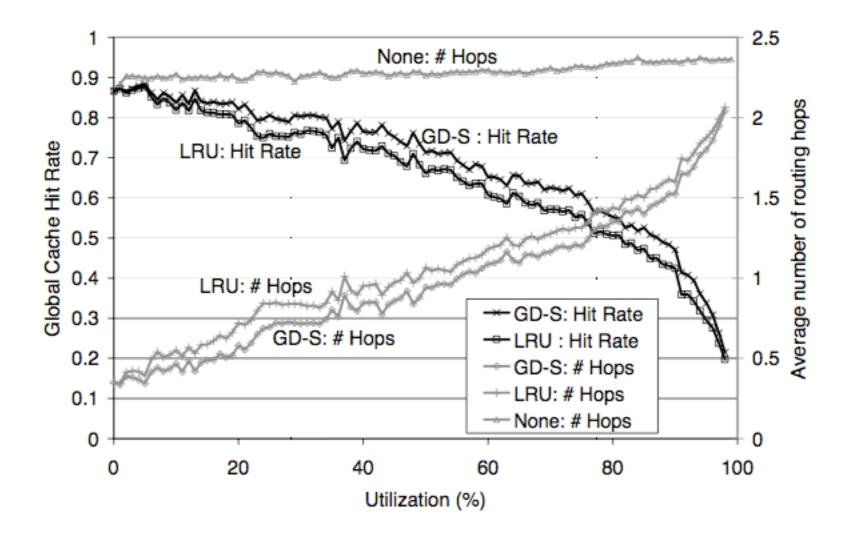


Figure 8: Global cache hit ratio and average number of message hops versus utilization using Least-Recently-Used (LRU), GreedyDual-Size (GD-S), and no caching, with $t_{pri} = 0.1$ and $t_{div} = 0.05$.

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Summary

- PAST provides a distributed storage system
 - which allows full storage usage and locality features

Storage management

- based ond Smartcard system
 - provides a hardware restriction
- utilization moderately increases failure rates and time behavior

Distributed Storage

Oceanstore Kubiatowicz et al. 2000

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Oceanstore

- Global utility infrastructure providing continuous access to persistent information based on peer-to-peer network Tapestry
- Literature
 - OceanStore: An Extremely Wide-Area Storage System
 - John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, Ben Zhao. U.C. Berkeley Technical Report UCB//CSD-00-1102, March 1999
 - OceanStore: An Architecture for Global-Scale Persistent Storage
 - John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, Ben Zhao.. ASPLOS 2000

- Extracting Guarantees from Chaos,
 - John D. Kubiatowicz. Communications of the ACM, Vol 46, No. 2, February 2003
- Pond: the OceanStore Prototype,
 - Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao, and John Kubiatowicz. FAST '03

Distributed Storage Networks and Computer Forensics Winter 2011/12 Computer Networks and Telematics University of Freiburg Christian Schindelhauer

Motivation of Oceanstore

Efficient distributed storage providing

- Availability
 - uninterrupted operation
- Durability
 - information entered survives for some 1000 years
- Access control
 - only authorized read/write
- Authenticity
 - no publishing of forged documents
- Robustness against attacks
 - e.g. denial of service

Distributed Storage Networks and Computer Forensics Winter 2011/12

Goals

- Massive scalability
 - works with billions of clients
- Anonymity
 - hard to determine producer and reader of a document
- Deniability
 - users can deny knowledge of data
- Resistance to censorship
- Challenge
 - coping with untrusted, unreliable, possibly evil peers

Example Applications

Storage server

- storing, retrieving, publishing documents
- E-Mail
 - distributed IMAP

Multimedia application

• with stream operations like append, truncate, etc.

Database Application

- ACID database semantics
 - i.e. atomicity, consistency, isolation, durability

First Goal

Work with untrusted infrastructure

- servers may crash without warning
- network keeps on changing
- may leak or spy on information
- only clients can be trusted with cleartext

Assumption:

- servers work correctly most of the time
- a certain class of servers can be trusted
 - regarding correctness
 - but may need read our data

2nd Goal

Data

- can be cached everywhere anytime
- can float freely
- Nomadic Data
 - Information is separated from physical location
 - complicated data coherence and location
- Introspective monitoring
 - used to discover relationship of objects
 - information is used for *locality* management

System Overview

Persistent object

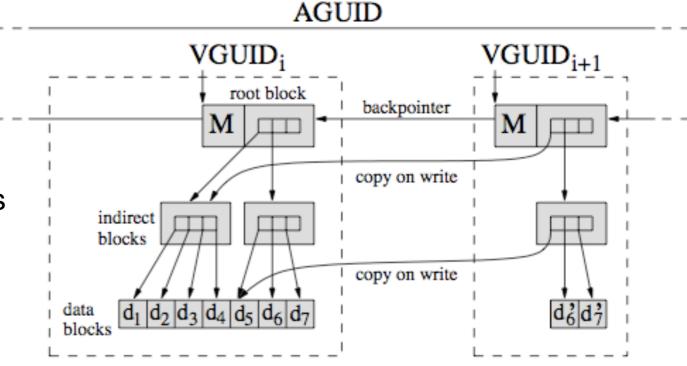
- named by GUID (globally unique identifiers)
- replicated and stored on multiple servers
- replicas are independent from the server
 - floating replicas

Locating objects and replicas

- fast probabilistic algorithm for detecting nearby copies
- slower deterministic algorithm for robust lookup

Modifying objects by updates

- every update creates a new version
- consistency is based on versioning
- cleaner recovery
- supports permanent pointers
- Active and archival forms of objects
 - active form
 - latest version
 - archival form
 - permanent, read-only version
 - stored by erasure codes
 - spread over 100s or 1000s of servers
 - deep archival storage


Virtualization

- Based on Tapestry
- Each peer has a GUID
 - globally unique identifier
- Decentralized object location and routing
 - Tapestry as overlay networks provides it
 - Built upon TCP/IP
 - Addressing by GUID inside Tapestry, not by IP-address
- Hosts
 - publish the GUIDs of their resources
 - may unpublish or leave the network at any time

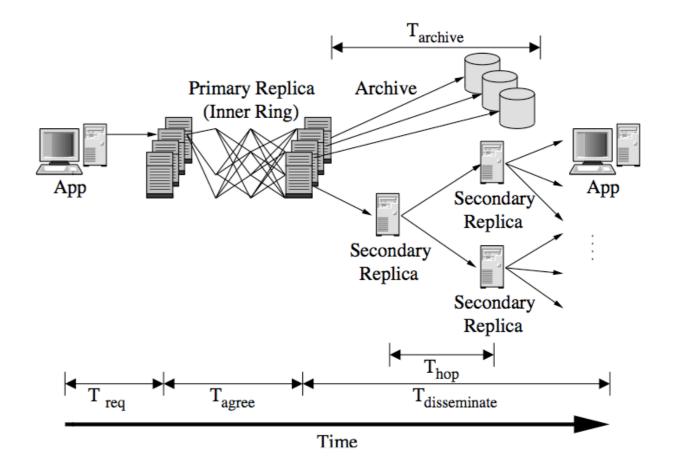
Data Model

- analog of file
- ordered sequence of read-only versions
- allows "time travel", i.e. revisiting old versions
- allows recovering of deleted data
- B-tree
 - organizes blocks of a data objects
 - pointers reuse old blocks

- **BGUID**
 - block GUID
 - secure hash of a block of data
- VGUID
 - version GUID
 - BGUID of the root block of a version
- AGUID
 - active GUID
 - names a complete stream of versions

Replication

Primary replica


- unique first appearance of each object
- addressed by AGUID
- serializes and applies all updates to the object
- enforces access control restrictions

Certificate

- called heartbeat
- tuple containing AGUID, VGUID of most recent version, sequence number

Primary replicas are implemented on a set of servers

 Use Byzantine-fault-tolerant cryptographic protocol of Castro and Liskov

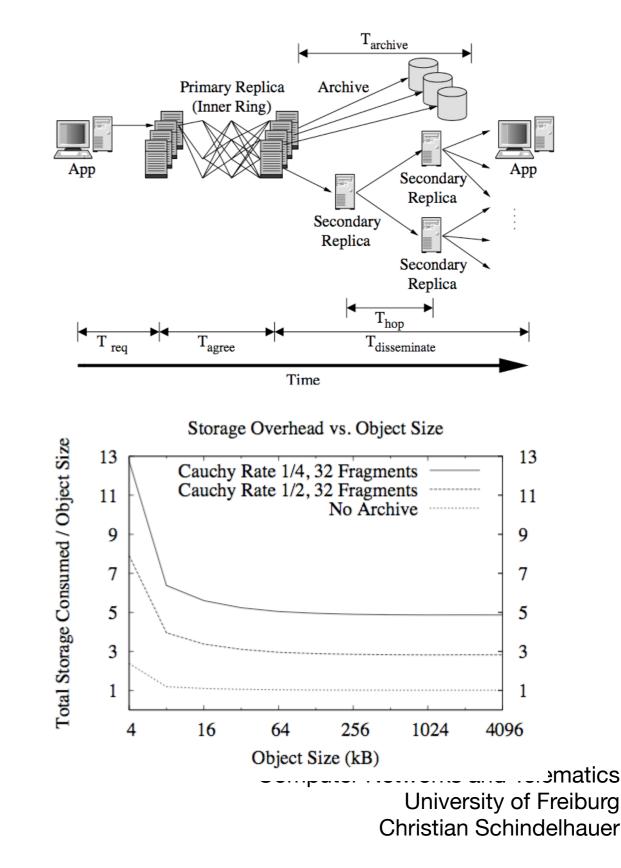
Replication: Archival Storage

93

Uses Erasure Codes

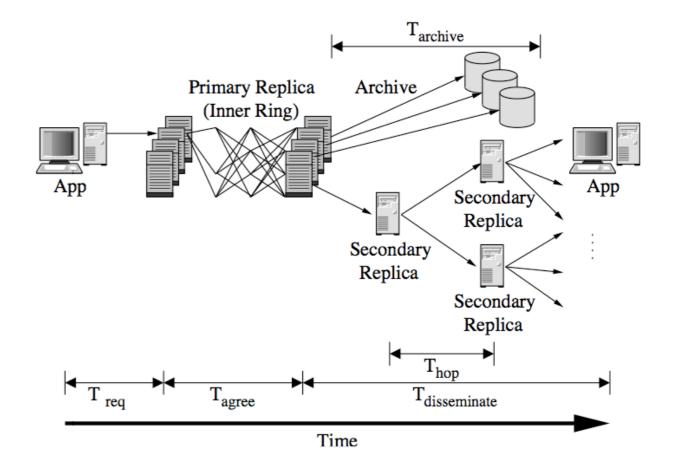
- a block is divided in to m fragments
- encoded into n>m fragments
 - e.g. by Reed-Solomon
- r = m/n is rate of encoding
- storage cost increases by a factor of 1/r

Reconstruction


• can be done from any m fragments

Prototype Pond uses

- rate 1/2-code with m=16 gives 32 fragments
- provides higher fault tolerance


Each replica

 will be erasure-coded and stored using Tapestry within the network

Replication: Caching

- Reconstruction of erasure codes is expensive
- Blocks are cached withoud encoding
- If a host queries Tapestry for a block
 - Tapestry checks for cached blocks
 - If it does not exist, Tapestry performs decoding
 - Then Tapestry stores the copies
 - second replicas
 - Blocks are stored in soft-state
 - can be erased at any time
- Caching in Oceanstore prototype uses Least-Recently-Used (LRU) strategy

Update Model

Updates are applied atomically

- represented as an array of potential actions and predicates
- Example actions
 - replacing a set of bytes in the objects
 - appending new data to the end of the object
 - truncating the object
 - checking latest version of the object

Introspection

Cycle of

- Observation
- Optimization
- Computation

Uses

- Cluster recognition
- Replica management
- Performance of routing structure, availability and durability of archival fragments, recognition of unreliably peers

Summary

- Prototype of Oceanstore has been recently released
 - Pond (presented 2003)
- Plus
 - Oceanstore provides more file system like structures
 - Efficient routing and caching
 - Consistent updates
 - Space efficient archival system
 - Access control
- Contra
 - complex design

Distributed Storage Networks and Computer Forensics 10 Peer-to-Peer Storage

Christian Schindelhauer

University of Freiburg Technical Faculty Computer Networks and Telematics Winter Semester 2011/12

