University of Freiburg, Germany
Department of Computer Science

Distributed Systems

Chapter 2 System Models

Christian Schindelhauer

07. May 2014
2.3.3: Security Model

The security of a distributed system can be achieved by securing the processes and the interaction channels and by protecting the objects they encapsulate against unauthorized access.

- Protecting objects
 - access rights
 - an authority (user or process), called *principal*, grants the access to the objects

- securing processes and interactions
 - messages are exposed to attacks
 - processes expose their interfaces
 - enable invocations
2.3.3: Security Model: The enemy

- threats to processes
 - e.g. IP lacks the reliable knowledge of the source of messages
 - Servers, e.g. mail-server delivers e-mail to attacker
 - Clients, e.g. fake GSM radio station captures secret phone calls
- threats to communication channels
 - enemy copies, alters, injects messages
 - enemy saves copies of messages and replays them later
 - such attacks can be defeated by the use of secure channels
- denial of service

from *Distributed Systems – Concepts and Design*, Coulouris, Dollimore, Kindberg
2.3.3: Security Model: Defeating Security Threats

Cryptography: the science of keeping messages secure
- symmetric encryption
- public-key encryption
- challenge-response protocols

Authentication
- shared secrets
- public-key encryption

Secure channels
- process know reliably the identity of the principle
- ensure privacy and integrity of the data
- include physical or logical time stamps

Other threats: denial of service and mobile code

\[15 = 3 \times 5 \rightarrow RSA \]
End of Section 2