
2. Time and Global States Page 1

University of Freiburg, Germany
Department of Computer Science

Distributed Systems

Chapter 3 Time and Global States

Christian Schindelhauer

05. May 2014

Christian Schindelhauer Distributed Systems 05. May 2014

2. Time and Global States Page 2

2: Time and Global States

How can distributed processes be coordinated and synchronized, e.g.

when accessing shared resources,

when determining the order of triggered events?

The importance of time

Distributed systems do not have only one clock.

Clocks on di↵erent machines are likely to di↵er.

Physical versus logical time.

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.1. Physical Time Page 3

2.1: Physical Time

Example; distributed software development using UNIX make

Computer sets its clock back after compiling a source file

User edits the source file

make assumes the source file has not been changed since compilation

make will not recompile

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.1. Physical Time Page 4

TAI and UTC

International Atomic Time TAI: mean number of ticks of caesium 133
clocks since midnight Jan. 1, 1958 divided by number of ticks per second
9,192,631,770.

Problem: 86,400 TAI seconds (corresponding to a day) are today 3 msec
less than a mean solar day (because solar days are getting longer because
of tidal forces).

Solution: whenever discrepancy between TAI and solar time grows to 800
msec a leap second is added to solar time.

The corresponding time is called Universal Coordinated Time UTC.

UTC is broadcast every second as a short pulse by the National Institute of
Standard Time NIST. It is broadcast by GPS as well.

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.1. Physical Time Page 5

Time in distributed systems

Each computer p is equipped with a local clock C
p

, which causes H
interrupts per second. Given UTC time t, the clock value of p is given by
C

p

(t).

Let C 0
p

(t) = dC

p

dt

Ideally, C 0
p

(t) = 1, real clocks have an error of about ±10�5 (10 ppm)

If there exists some constant ⇢ such that

1� ⇢ dC

dt
 1 + ⇢,

⇢ is called the maximum drift rate.

If synchronized �t ago, two clocks may di↵er at most by 2⇢�t.

To ensure synchronization within precision �, then they need to be
synchronized at least every �

2⇢ seconds.

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.1. Physical Time Page 6

Network Time Protocol NTP

Assumption, one system C is connected to a UTC server. This system is
called time-server.

Each machine C , every �
2⇢ seconds, sends a time request to the

time-server, which immediately responds with the current UTC.

machine C sets its time to be T
3

,
where T is the received time
RTT is the round trip time

Time Server

Client T1

T2 T3

T4time

request
message

answer
message

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.1. Physical Time Page 7

Problems and solutions

Problem: time may run backwards!

Solution: clocks converge to the correct time.

Problem: Because of message delays, reported time will be outdated when
received by a client.

Solution: Try to find a good estimation for the delay.

. . . (next slide)

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.1. Physical Time Page 8

Problems and solutions

Problem: Because of message delays, reported time will be outdated when
received by a client.

Solution: Try to find a good estimation for the delay.

Algorithm of Flaviu Cristian

Use (T

4

�T

1

)

2

if no other information is available.

If interrupt handling time I is known, use (T

4

�T

1

�I)

2

.
. . . else . . .

Time Server

Client T1

T2 T3

T4time

request
message

answer
message

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.1. Physical Time Page 9

Problems and solutions

Problem: Because of message delays, reported time will be outdated when
received by a client.

Solution: Try to find a good estimation for the delay
NTP: Network Time Protocol

. . . else . . .
To adjust A to B, use piggybacking:
A sends a request to B timestamped with T

1

.
B records the time of receipt T

2

(taken from its local clock) and returns a
response timestamped with T

3

and piggybacking T
2

.
A records the time of arrival T

4

. The propagation time from A to B is
assumed to be the same as from B to A, T

2

� T
1

⇡ T
4

� T
3

.
The o↵set ✓ of A relative to B can be estimated by A:

✓ = T
3

+
(T

2

� T
1

) + (T
4

� T
3

)

2
� T

4

=
(T

2

� T
1

) + (T
3

� T
4

)

2

If ✓ < 0, in principle, A has to set its clock backwards.

Take the measures several times and compute the mean while ignoring outliers.

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.1. Physical Time Page 10

Examples: A has to be adjusted to B .

A sends a request to B timestamped with T
1

. B records the time of receipt T
2

(taken
from its local clock) and returns a response timestamped with T

3

and piggybacking
T

2

. A records the time of arrival T
4

.
The o↵set ✓ of A relative to B can be estimated by A:

✓ =
(T

2

� T
1

) + (T
3

� T
4

)

2

(a) No need for adaption detected.

T
1

= 10, T
2

= 12, T
3

= 14, T
4

= 16 =) ✓ = 0.

(b) A has to slow down.

T
1

= 10, T
2

= 12, T
3

= 14, T
4

= 18 =) ✓ = �1.

(c) A has to hurry up.

T
1

= 10, T
2

= 12, T
3

= 14, T
4

= 14 =) ✓ = 1.

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.1. Physical Time Page 11

On scalability of NTP (roughly)

NTP is an Internet standard (RFC 5905).

NTP service is provided by a network of servers.

Primary servers are directly connected to a UTC-source.

Secondary servers synchronize themselves with primary servers.

This approach is applied recursively leading to several layers.

Server A adjusts itself to server B if B is assigned a lower layer than A.

The whole network is reconfigurable and thus is able to react on errors.

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

2. Time and Global States 2.2. Logical Time Page 12

2.2: Logical Time

Why?

Getting physical clocks absolutely synchronized is not possible.

Thus it is not always possible to determine the order of two events.

For such cases logical time can be used as a solution.
If two events happen in the same process they are ordered as observed.
If two processes interchange messages, then the sending event is always
considered to be before the receiving event.

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

2. Time and Global States 2.2. Logical Time Page 13

Lamport’s happened-before relation (causal ordering)

If two events a, b happen in the same process p
i

they are ordered as
observed and we write a!

i

b.
Moreover, this implies a! b systemwide.

If two processes interchange messages, then the sending event a is always
considered to be before the receiving event b, thus a! b.

Whenever a! b and b ! c , then also a! c .

Events not being ordered by ! are called concurrent.

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.2. Logical Time Page 14

Example

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

We conclude a! b, b ! c , c ! d , d ! f , a! f , however not a! e; a, e are
concurrent.

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.2. Logical Time Page 15

Algorithm of Leslie Lamport

Let L
i

(e) denote the time stamp of event e at process P
i

.

When a new event a occurs in process P
i

:

L
i

:= L
i

+ 1

Each message m sent from P
i

to P
j

is piggybacked by the timestamp L
i

(a)
of the send-event a.

When (m, t
a

) is received by P
j

, P
j

adjusts its logical clock L
j

to the logical
clock of P

j

.
L

j

:= max{L
j

, t
a

}

and increments L
j

for the received message event.

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.2. Logical Time Page 16

Three clocks with application of Lamport’s algorithm.

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.2. Logical Time Page 17

Totally ordered logical clocks

Extend the Lamport clock for each process P
i

:

Clock values must be systemwide unique
for this the clock value L

i

is referred to with the process id i , i.e. (L
i

, i)
all distinct clocks L

i

can be unified into a system clock L.

Define the total ordering

(T
i

, i) < (T
j

, j) :()
(

i < j if T
i

= T
j

T
i

< T
j

else

So, we translate a partial ordering into a total ordering

However from the total ordering L(a) < L(b) one cannot conclude a! b.

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.2. Logical Time Page 18

Mattern’s Vector Clocks

Vector clock for a system of n processes: array of n integers.

Each process P
i

keeps its own vector clock V
i

which is used to timestamp local
events.

Processes piggyback their own vector clock on messages they send.

Update rules for vector clocks:

VC1: Initially, V
i

[j] := 0 for i , j 2 {1, . . . , n}
VC2: P

i

timestamps prior to each event: V
i

[i] := V
i

[i] + 1.
VC3: P

i

sends the value t = V
i

with each message.
VC4: When P

i

receives some message piggybacked with timestamp t, it sets

V
i

[j] := max{V
i

[j], t[j]} for i = 1, 2, . . . , n

V
i

[i] is the number of events that P
i

has timestamped.

V
i

[j] for i 6= j is the number of events that have occured at P
j

to the knowledge
of P

i

.

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

2. Time and Global States 2.2. Logical Time Page 19

Vector Clock Example

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 05. May 2014

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

schindel

	Time and Global States
	Physical Time
	Logical Time
	Global States

	Leere Seite
	Leere Seite
	Leere Seite

