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2: Time and Global States

How can distributed processes be coordinated and synchronized, e.g.
bl b
@ when accessing shared resources,
{R when determining the order of triggered events?

The importance of time

m Distributed systems do not have only one clock.
m Clocks on different machines are likely to differ.

—_—
m Physical versus logical time.
— —
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2.1: Physical Time

Example; distributed software development using UNIX make

—_—

m Computer sets its clock back after compiling a source file
m User edits the source file
g
m_make assumes the source file has not been changed since compilation

m make will not recompile
L
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2 Time and Giobal States

TAIl and UTC

m International Atomic Time TAIl: mean number of ticks of caesium 133
clocks since midnight Jan. 1, 19 ivided by number of ticks per second

9,192,631 .

; Problem: 86,400 TAI seconds (corresponding to a day) are today 3 msec
less than a mean solar day (because solar days are getting longer because
of tidal forces).

& Solution: whenever discrepancy between TAI and solar time grows to 800
msec a leap second is added to solar time.

m The corresponding time is called Universal Coordinated Time UTC.

e e
m UTC is broadcast every second as a short pulse by the National Institute of
Standard Time NIST. It is broadcast by GPS as well.
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2 Time and Giobal States

Time in distwy_stems

m Each computer p is equipped with a local clock C,, which causes H
interrupts per second. Given UTC time t, the clock value of p is given by

Co(1).
m Let C)(t) = %
m Ideally, C/(t) = 1, real clocks have an error of about £10~° (10 ppm)

m If there exists some constant p such that —

z dC
1-p<—X<1
ps—m =Lt

L
p is called the maximum drift rate.

m If synchronized At ago, two clocks may differ at most by 2pAt.

m To ensure synchronization within precision 9, then they need to be
synchronized at least every % seconds.

—
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2. Time and Global States

Network Time Protocol NTP

m Assumption, one system C is connected to a UTC server. This system is
called time-server.

m Each machine C, evereconds, sends a time request to the
time-server, which immediately responds with the current UTC.

m machine C sets its time to be T3,

m where T is the received time
m RTT is the round trip time

Time Server T _T3
il |
~—
request hnswer E: ( I-;A/)
messade nessage
, T I g
Client A1 ! ,
time
~ _7)
—_—
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2 Time and Giobal States

Ao A4 g 1» 41 4L
A0 A4 A1,1 4L 41D aZ
Problems and solutions [

@ Problem: time may run backwards!
{m Solution: clocks converge to the correct time.

¢m Problem: Because of message delays, reported time will be outdated when
received by a client. — 2

m Solution: Try to find a good estimation for the delay.

m ... (next slide)
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2. Time and Global States

Problems and solutions

m Problem: Because of message delays, reported time will be outdated when
received by a client.

m Solution: Try to find a good estimation for the delay.

m Algorithm of Flaviu Cristian

Use @ if no other information is available.
m If interrupt handling time [ is known, use w
m .. .else... {——

T3

d Time Server 2

T, - )-

L 6 éw 0 requesl/(/ \ answer T

— message message (’
S =

I4- T, ,tﬁ

+@ Lﬁ Client | e T,

+6@ —_

e
-
\@
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Problems and solutions

m Problem: Because of message delays, reported time will be outdated when
received by a client.

m Solution: Try to find a good estimation for the delay
NTP: Network Time Protocol —

m...else ...

m To adjust A to B, use piggybacking:

m A sends a request to B timestamped with T;.

m B records the time of receipt T, (taken from its local clock) and returns a
response timestamped with T3 and piggybacking T>.

m A records the time of arrival T4. The propagation time from A to B is
assumed to be the same as from Bto A, To — Ty =~ T4 — Ts.

m The offset 6 of A relative to B can be estimated by A:

T-T)+(T—T
T3+( 2 1);( u 3)—7—42

m If 6 <0, in principle, A has to set its clock backwards.

m Take the measures several times and compute the mean while ignoring outliers.
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Examples: A has to be adjusted to B.

A sends a request to B timestamped with T;. B records the time of receipt T> (taken
from its local clock) and returns a response timestamped with T3 and piggybacking
T>. A records the time of arrival Tj.

The offset 6 of A relative to B can be estimated by A:

0:(7-2—7—1)-;(7—3—7-4) M‘-B

(2a) No need for adaption detected.

(= 1%
T1=10,T, =12, T3 = 14, T4 = 16 = 0 = 0.
(b) A has to slow down.
T.=10,T, =12, Ts = 14, Te = 18 — 6 — —1. 5"179 !
(
(c) A has to hurry up. ,1;

T1=10,T, =12, T3 =14, T4 =14 = 6 = 1. @ Cf%
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On scalability of NTP (roughly)

m NTP is an Internet standard (RFC 5905).

m NTP service is provided by a network of servers.

® Primary servers are directly connected to a UTC-source.

o Secondary servers synchronize themselves with primary servers.

& This approach is applied recursively leading to several layers.

m Server A adjusts itself to server B if B is assigned a lower layer than A.

B The whole network is reconfigurable and thus is able to react on errors.
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2.2: Logical Time

() \””77 lj"—a

Why?

m Getting physical clocks absolutely synchronized is not possible.

m Thus it is not always possible to determine the order of two events.

m For such cases logical time can be used as a solution.

m If two events happen in the same process they are ordered as observed.
m If two processes interchange messages, then the sending event is always
considered to be before the receiving event.
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Lamport’s happened-before relation (causal ordering)

m If two events a, b happen in the same process p; they are ordered as
observed and we write a —; b.
Moreover, this implies a — b systemwide.

m If two processes interchange messages, then the sending event a is always
considered to be before the receiving event b, thus a — b.

m Whenever a — b and b — ¢, then also a — c.
\ —

Events not being ordered by — are called concurrent.

C;Dheb
@ b

Y, ¢
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Example
1 Z -
[Pf—e—s
a b my (z_)

(_E . Physical
b
¢ d my («) me
A
(P . — 5
e f

from Distributed Systems — Concepts and Design, Coulouris, Dollimore, Kindberg

We conclude a — b,b — ¢c,c — d,d — f,a — f, however not a — e; a, e are

concurrent.
—_—

« |l e c Ul
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2. Time and Global States

Algorithm of Leslie Lamport

m Let L;(e) denote the time stamp of event e at process P;.

m When a new event a occurs in process P;:
i

Li=L;+1
-
m Each message m sent from P to P; is piggybacked by the timestamp L;(a)
of the send-event a. — —

m When (m, t,) is received by P;, P; adjusts its logical clock L; to the logical

clock of P;.
L= max{L_j, t\a} E /j

and increments L; for the received message event.
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L(aL):L(L) 0 *é A

Three clocks with application of Lamport's algorithm. 8,5 dre s, P,‘

10 2.1 L,'(‘J< L;(¢)
fb/pT a b my (=.> a =D é
3 -+ 4.t Physical
P2 c q time
m3
P 1 3 5 3
2 . ’

from Distributed Systems — Concepts and Design, Coulouris, Dollimore, Kindberg 2
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Totally ordered logical clocks

Extend the Lamport clock for each process P;:

Clock values must be systemwide unique

m for this the clock value L; is referred to with the process id i, i.e. (Lj, i)
m all distinct clocks L; can be unified into a system clock L.

m Define the total ordering

i wrT
(Tii) < (Tpj) = =7 "=
— T; < T; else

So, we translate a partial ordering into a total ordering

. -_—
However from the total ordering L(a) < L(b) one cannot conclude a — b.

_
—_—
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2 Time and Giobal States

( g 0

m Vector clock for a system of n processes: array of n integers.

Mattern's Vector Clocks

m Each process P; keeps its own vector clock V; which is used to timestamp local
J—
events.

m Processes piggyback their own vector clock on messages they send.

Update rules for vector clocks:

VC1: Initially, Vi[j]:=0 for i,j € {1,...,n}

VC2: P; timestamps prior to each event: V;[i] := Vi[i] + 1.

VC3: P; sends the value t = V; with each message.

VC4: When P; receives some message piggybacked with timestamp t, it sets

Vilj] := max{Vi[j], t[j]} fori=1,2,...,n

m V;[i] is the number of events that P; has timestamped.

m V[j] for i # j is the number of events that have occured at P; to the knowledge
of P,‘.
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(100) (2)0.0) 21D

Vector Clock Example

P1 b m }
210) o) L, Physical
P2 L g ) Z '210) time
00 BAA 4
P3 o L ~J r,l"\} f 2

from Distributed Systems — Concepts and Design, Coulouris, Dollimore, Kindberg
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