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2.2: Logical Time

Why?

Getting physical clocks absolutely synchronized is not possible.

Thus it is not always possible to determine the order of two events.

For such cases logical time can be used as a solution.
If two events happen in the same process they are ordered as observed.
If two processes interchange messages, then the sending event is always
considered to be before the receiving event.

Christian Schindelhauer Distributed Systems 12. May 2014



2. Time and Global States 2.2. Logical Time Page 13

Lamport’s happened-before relation (causal ordering)

If two events a, b happen in the same process p
i

they are ordered as
observed and we write a!

i

b.
Moreover, this implies a! b systemwide.

If two processes interchange messages, then the sending event a is always
considered to be before the receiving event b, thus a! b.

Whenever a! b and b ! c , then also a! c .

Events not being ordered by ! are called concurrent.

Christian Schindelhauer Distributed Systems 12. May 2014
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Example

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

We conclude a! b, b ! c , c ! d , d ! f , a! f , however not a! e; a, e are
concurrent.
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Algorithm of Leslie Lamport

Let L
i

(e) denote the time stamp of event e at process P
i

.

When a new event a occurs in process P
i

:

L
i

:= L
i

+ 1

Each message m sent from P
i

to P
j

is piggybacked by the timestamp L
i

(a)
of the send-event a.

When (m, t
a

) is received by P
j

, P
j

adjusts its logical clock L
j

to the logical
clock of P

j

.
L

j

:= max{L
j

, t
a

}

and increments L
j

for the received message event.

Christian Schindelhauer Distributed Systems 12. May 2014
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Three clocks with application of Lamport’s algorithm.

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
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Totally ordered logical clocks

Extend the Lamport clock for each process P
i

:

Clock values must be systemwide unique
for this the clock value L

i

is referred to with the process id i , i.e. (L
i

, i)
all distinct clocks L

i

can be unified into a system clock L.

Define the total ordering

(T
i

, i) < (T
j

, j) :()
(

i < j if T
i

= T
j

T
i

< T
j

else

So, we translate a partial ordering into a total ordering

However from the total ordering L(a) < L(b) one cannot conclude a! b.
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Mattern’s Vector Clocks

Vector clock for a system of n processes: array of n integers.

Each process P
i

keeps its own vector clock V
i

which is used to timestamp local
events.

Processes piggyback their own vector clock on messages they send.

Update rules for vector clocks:

VC1: Initially, V
i

[j ] := 0 for i , j 2 {1, . . . , n}
VC2: P

i

timestamps prior to each event: V
i

[i ] := V
i

[i ] + 1.
VC3: P

i

sends the value t = V
i

with each message.
VC4: When P

i

receives some message piggybacked with timestamp t, it sets

V
i

[j ] := max{V
i

[j ], t[j ]} for i = 1, 2, . . . , n

V
i

[i ] is the number of events that P
i

has timestamped.

V
i

[j ] for i 6= j is the number of events that have occured at P
j

to the knowledge
of P

i

.

Christian Schindelhauer Distributed Systems 12. May 2014
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Vector Clock Example

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
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Comparing vector timestamps

The clock vectors define a partial ordering
V = V 0 i↵ V [j ] = V 0[j ] for all j 2 {1, . . . , n}
V  V 0 i↵ V [j ]  V 0[j ] for all j 2 {1, . . . , n}
V < V 0 i↵ V  V 0 ^ V 6= V 0.

If for events a, b neither V (a)  V (b) nor V (a) � V (b) the events are
called concurrent, i.e. a||e

Comparing vector timestamps
V (a) V (b) Relation

(2, 1, 0) (2, 1, 0) V (a) = V (b) all entries are the same
(1, 2, 3) (2, 3, 4) V (a) < V (b) all entries of V are prior to V 0

(1, 2, 3) (3, 2, 1) a || b two events are concurrent

Christian Schindelhauer Distributed Systems 12. May 2014
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Lamport Relationship and Vector Clocks

Theorem
For any two events e

j

, e
i

:

e
j

! e
i

() V (e
j

) < V (e
i

) .

Proof sketch

e
j

! e
i

=) V
j

< V
i

.
If the events occur on the same process then V

j

< V
i

follow directly.
e
j

! e
i

implies a message is sent after e
j

to the process with event e
i

or two
succeeding events of a process
Since each entry of the receiving process is updated to at least the
maximum of the entries of the sending processes, V

j

< V
i

e
j

! e
i

(= V
j

< V
i

.
If both events occur on the same process, e

j

! e
j

follows straightforward.
An increase of the i-th row can only be caused by a message path sent from
the process of e

j

to e
i

complete proof is left as an exercise

Christian Schindelhauer Distributed Systems 12. May 2014
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2.3. Global System States

Distributed Garbage
Collection

Non-referenced objects
need to be erased

p
2

has an object referenced
in a message to p

1

p
1

has an object referenced
by p

2

Neither one can be erased

How to determine a global state
in the absence global time

Christian Schindelhauer Distributed Systems 12. May 2014
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2.3. Global System States

Distributed Deadlock
Detection

occurs when processes wait
for each other to send a
message

and the processes form a
cycle

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
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2.3. Global System States

Distributed Termination
Detection

How to detect that a
distributed algorithm has
terminated

Assume p
1

and p
2

request
values from the other

If they wait for a value
they are passive, otherwise
active

Assume both processes are
passive. Can we conclude
the system has terminated?

No, since there might be
an activating message on
its way

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
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2.3. Global System States

Distributed Debugging

Distributed systems are di�cult to debug

e.g. consider a program where each process has a changing variable x
i

All variables are required to be in range |x
i

� x
j

|  1.

How to be sure that this will never be violated?

Christian Schindelhauer Distributed Systems 12. May 2014
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Cuts

Consider system P of n processes p
i

for i = 1, . . . , n.

The execution of a process is characterized by its history (of events et

i

)

history(p
i

) = h
i

= he0

i

, e1

i

, e2

i

, . . .i

We denote a finite prefix
hk

i

= he0

i

, e1

i

, . . . , ek

i

i

An event is either

an internal action or
sending a message or
receiving a message

Let sk

i

denote the state of process p
i

immediately before event ek

i

.

The global history H is
H = h

1

[ h
2

[ . . . [ h
n

A cut C of the system’s execution is a set of prefaces

C = hc

1

1

[ hc

2

2

[ . . . [ hc

n

n

Christian Schindelhauer Distributed Systems 12. May 2014
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Consistent Cuts

A cut C is consistent if,

For all events e 2 C : f ! e =) f 2 C .

i.e. for each event it also contains all the events that happened-before the event.

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
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Global States

A consistent global state corresponds to a consistent cut.

A run is a total ordering of all events in a global history that is consistent with
each local history’s ordering (!

i

, for i = 1, . . . , n).

A consistent run (linearization) is an ordering of the events in the global history
that is consistent with the happened-before-relation (!) on H.

Consistent runs pass only through consistent global states.

Christian Schindelhauer Distributed Systems 12. May 2014
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Global State Predicates, Stability, Safety and Liveness

A global state predicate is a function that maps from the set of global states to
{true, false}.
Stability of a global state predicate: A global state predicate is stable if once it
has reached true it remains in this state for all states reachable from this state.

Safety is the assertion that an undesired state predicate evaluates to false to all
states S reachable from the starting state S

0

.

Liveness is the assertion that a desired state predicate evaluates to true to all
states S reachable from the starting state S

0

.

Christian Schindelhauer Distributed Systems 12. May 2014
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How to detect and record a global state

’Snapshot’ algorithm of Chandy and Lamport

Goal
record a set of events corresponding to a global state (consistent cut)
in a living system during run-time
without extra process

Requirements
channels, processes do not fail. Communication is reliable
channels are uni-directional and have FIFO message delivery
graph of processes and channels is strongly connected
any process may initiate a snapshot
processes continue their execution (including messages)

Notations
p

i

’s incoming channel: where all messages for p
i

arrive
p

i

’s outgoing channel: where p
i

sends all messages to other processes
Marker message: a special message distinct from every other message

Christian Schindelhauer Distributed Systems 12. May 2014
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Distributed Snapshot of Chandy and Lamport

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
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General remarks
A snapshot consists of the state of a process and states of all incoming channels.

Starting a snapshot:
Any process P can start a snapshot.

1 Create a local snapshot of P’s state.

2 Send marker message over all channels.

Upon receipt of a marker message, other processes participate in the
snapshot.

Collecting the snapshot:
Every process has created a local snapshot.
The local snapshot can be sent to a collector process.

Terminating a snapshot:
If marker message has been received on all channels, then the snapshot
terminates
Then the snapshot can be sent to a collector process.

Christian Schindelhauer Distributed Systems 12. May 2014
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Distributed Snapshot of Chandy and Lamport

State S2

p1 p2
c1

c2
50€

1995 T-Shirts

Marker
Order 10 shirts 

for 100€

State S1

State S0

p1 p2
c1

c2 50€

2000 T-Shirts1000€

0 T-Shirts

p1 p2
c1

c2
50€

2000 T-Shirts

MarkerOrder 10 shirts 
for 100€

old order 5 shirts 
for 50€

send 5 shirts

State S3

p1 p2
c1

c2

Order 10 shirts 
for 100€

mark process

mark process

Marker

900€

0 T-Shirts

mark process

900€

0 T-Shirts

mark process

900€

5 T-Shirts

mark process

old order 5 shirts 
for 50€

Recorded state

p1 p2
c1

c21000€

0 T-Shirts

Order 10 shirts 
for 100€

50€

1995 T-Shirts

50€

1995 T-Shirts
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Distributed Snapshot of Chandy and Lamport

State S2

p1 p2
c1

c2
50€

1995 T-Shirts

Marker
Order 10 shirts 

for 100€

State S1

State S0

p1 p2
c1

c2 50€

2000 T-Shirts1000€

0 T-Shirts

p1 p2
c1
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50€

2000 T-Shirts
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p1 p2
c1

c2

Order 10 shirts 
for 100€
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Marker
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0 T-Shirts
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900€

0 T-Shirts
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900€

5 T-Shirts
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old order 5 shirts 
for 50€

Recorded state

p1 p2
c1

c21000€

0 T-Shirts

Order 10 shirts 
for 100€

50€

1995 T-Shirts

50€

1995 T-Shirts
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Distributed Snapshot of Chandy and Lamport
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Termination of the snapshot algorithm

If marker message has been received on all channels, then the snapshot
terminates

If the communication graph induced by the messages is strongly connected

then the marker eventually reaches all nodes

) only a finite number of messages need to be recorded

Christian Schindelhauer Distributed Systems 12. May 2014
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The snapshot algorithm selects a Consistent Cut

Consider two events e
i

! e
j

on processes p
i

and p
j

If e
j

is in the cut of the snapshot, then e
i

should be, too

If e
j

occurred before p
j

taking its snapshot, then e
i

should have occurred
before p

i

has taking its snapshot

If p
i

= p
j

this is obvious.

Now we consider p
i

6= p
j

and assume (*) that e
i

is not in the cut and e
j

is
within the cut.

Consider messages m
1

,m
2

, . . .m
h

causing the happened-before relationship
e
i

! e
j

.

So, m
1

must have sent after the snapshot, and m
2

, and so forth. Each of
this messages must have been sent after the marker message occurred on
each channel (because of FIFO rules on the channel).

Then, e
j

cannot be in the cut. This contradicts (*) and proofs the claim.

Christian Schindelhauer Distributed Systems 12. May 2014
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Reachability of the snapshot algorithm selects a Consistent Cut

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

A snapshot characterizes events into two types
1 pre-snap: An event happening before marking the corresponding process
2 post-snap: An event happening after marking

Note that pre-snap events can take place after post-snap events

It is impossible that e
i

! e
j

if e
i

is a post-snap event and e
j

is a pre-snap
event

Christian Schindelhauer Distributed Systems 12. May 2014
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Distributed Debugging

Goal of algorithm of Marzullo and Neiger

Testing properties post-hoc, e.g. safety conditions

Capture traces rather than snapshots

Gathered by a monitoring process (outside the system)

How are process states collected

How to extract consistent global states

How to evaluate safety, stability and liveness conditions

Christian Schindelhauer Distributed Systems 12. May 2014
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Distributed Debugging

Temporal operators

Consider all linearizations of H

possible � There exists a consistent global state S through
a linearization such that �(S) is true.

definitely � For all linearizations a consistent global state will
be passed such that �(S) is true.

Christian Schindelhauer Distributed Systems 12. May 2014
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Relationship of Definitely and Possibly

1 8S 2 H : �(S) =) definitely �

2 8S 2 H : �(S) =) possible �

3 8S 2 H : ¬�(S) =) ¬definitely �

4 8S 2 H : ¬�(S) =) ¬possibly �

5 definitely � =) possibly �

6 ¬possibly � =) definitely ¬�

7 definitely ¬� 6=) ¬possibly �

Christian Schindelhauer Distributed Systems 12. May 2014
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Distributed Debugging: Definitely |x1 � x2|  50

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
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Algorithm of Marzullo & Neiger

Collecting the states

All initial states are sent to the monitor

All state changes are sent to the monitor

If only a predicate is monitored � then only states are sent where � changes

With the states the corresponding vector clock is sent to the monitor

The vector clocks will be used to establish the !-relationship

The monitor computes the DAG corresponding to the
happened-before-relationship

Arrange the graph in levels L = 0, 1, . . . such that no global state in level
happened before a state in lower level.

In Level 0 there is only the initial state.

Christian Schindelhauer Distributed Systems 12. May 2014
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from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
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from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
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Evaluating Definitely �(S)
Cost
Let n be the number of processes with k events each

Time: O(kn)

Space: O(kn).

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 12. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




2. Time and Global States 2.3. Global States Page 47

End of Section 2
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