
3. Page 1

University of Freiburg, Germany

Department of Computer Science

Distributed Systems

Chapter 4 Coordination and Agreement

Christian Schindelhauer

19. May 2014

Christian Schindelhauer Distributed Systems 19. May 2014



4. Coordination and Agreement 4.1. Introduction Page 2

4.1: Introduction

Coordination in the absence of master-slave relationship

Failures and how to deal with it

Distributed mutual exclusion

Agreement is a complex problem

Multicast communication

Byzantine agreement

Assumptions

Channels are reliable

The network remains connected

Process failures are not a threat to the
communication

Processes only fail by crashing

Christian Schindelhauer Distributed Systems 19. May 2014



4. Coordination and Agreement 4.1. Introduction Page 3

Failure Detectors

Failure detector is a service answer queries about the failures of other
processes

Most failure detectors are unreliable failure detectors

Returning either suspected or unsuspected
suspected: some indication of process failure

unsuspected: no evidence for process failure

Reliable failure detector

Returning either failed or unsuspected
failed: detector has determined that the process has failed

unsuspected: no evidence for failure

Example of an unreliable failure detector

Each process p sends a ’p is here’ message to every other process every T seconds

If the message does not arrive within T + D seconds then the process is reported

as Suspected

Christian Schindelhauer Distributed Systems 19. May 2014



4. Coordination and Agreement 4.2. Distributed Mutual Exclusion Page 4

4.2: Distributed Mutual Exclusion

Problem known from operating systems (there: critical sections)

How to achieve mutual exclusion only with messages

Application-Level Protocol
enter() enter critical section – block if necessary
resourceAccesses() access shared resources in critical section
exit() leave critical section – other processes may enter

Essential Requirements
ME1: Safety At most one process may execute the critical section at a

time
ME2: Liveness Requests to enter and exist the critical section eventually

succeed
ME3: ! ordering requests enter the critical section according to the

happened-before relationship

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.2. Distributed Mutual Exclusion Page 5

Performance of algorithms for mutual exclusion

Bandwidth consumed: proportional to the number of messages sent in each
entry and exit operation

Client delay at each entry and exit operation

Throughput rate of several processes entering the critical section

Throughput is measured by the synchronization delay between one process
exiting the critical section and the next process entering it

short synchronization delay correspond to high throughput

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel




4. Coordination and Agreement 4.2. Distributed Mutual Exclusion Page 6

Central Server Algorithm

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Simplest solution

Request are handled by queues

Performance
Entering the critical section: two messages (request, grant)
Leaving the critical section: one message (release)

Server is performance bottleneck

Christian Schindelhauer Distributed Systems 19. May 2014

schindel




4. Coordination and Agreement 4.2. Distributed Mutual Exclusion Page 7

Ring Based Algorithm

from Distributed Systems – Concepts and Design,

Coulouris, Dollimore, Kindberg

Simplest distributed solution

Arrange processes as ring (not related to
physical network)

A token (permission to enter critical section)
is passed around

Conditions ME1 (safety) and ME2 (liveness)
are met

ME3: ! ordering is not fulfilled

Continuous consumption of bandwidth

Synchronisation delay is between 1 and n
messages.

Christian Schindelhauer Distributed Systems 19. May 2014

schindel




4. Coordination and Agreement 4.2. Distributed Mutual Exclusion Page 8

The Algorithm of Ricart and Agrawala

Mutual exclusion between n peer processes p
1

, p
2

, . . . , p
n

which
have unique numeric identifiers

possess communication channels to one another

keep Lamport clocks attached to the messages

Process states
released: outside the critical section

wanted: wanting to enter critical section

held: being in the critical section

Each process released immediately answers a request to enter the critical
section

The process with held does not reply to requests until it is finished

If more than one process requests the entry, the first one collecting the
n � 1 replies is allowed to enter the critical section.

If the Lamport clocks of the latest messages do not di↵er, the numeric ID
is used to break the tie.

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel




4. Coordination and Agreement 4.2. Distributed Mutual Exclusion Page 9

The Algorithm of Ricart and Agrawala

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel




4. Coordination and Agreement 4.2. Distributed Mutual Exclusion Page 10

The Algorithm of Ricart and Agrawala

Mutual exclusion properties
ME1 (safety): processes in state held prevent other ones from entering the

CS

ME2 (liveness): follows from the ordering

ME3 (ordering): follows from the use of Lamport clocks

Cost of gaining access: 2(n � 1) messages
n � 1 for multicast of request

n � 1 for replies

Client delay for requesting entry: a round-trip message

Synchronization delay is one message transmission time

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.2. Distributed Mutual Exclusion Page 11

Maekawa’s Voting algorithm

Reduce the number of messages by asking a
subset

For each process p
i

choose a voting set V
i

such
that

1 p
i

2 V
i

2 V
i

\ V
j

6= ; for all i , j
3 |V

i

| = k for all i (fairness)

4 Each process occurs in at most m voting sets

Minimal choice of max{m, k} is k,m 2 ⇥(
p

n).

The optimal solution can be approximated by
placing all nodes in a square matrix and
choosing the row and column as voting set.

.
p1

.
p2

.
p3

.
p4

.
p5

.
p6

.
p7

.
p9

.
p10

.
p11

.
p13

.
p14

.
p12

.
p8

.
V6

from

Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.2. Distributed Mutual Exclusion Page 12

Maekawa’s Voting algorithm

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.2. Distributed Mutual Exclusion Page 13

Maekawa’s Voting algorithm

Mutual exclusion properties
ME1 (safety): follows from the intersections

of V
i

and V
j

ME2 (liveness): not guaranteed.

Sanders improved this algorithm to achieve
ME2 and ME3 (not presented here)

Cost
2k per entry to the critical section

k for exit

O(

p
n) messages

Client delay for requesting entry: a round-trip
message

Synchronization delay is a round-trip message

.
p1

.
p2

.
p3

.
V3

.
V2

.
V1

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.2. Distributed Mutual Exclusion Page 14

Mutual Exclusion

Fault Tolerance

What happens when messages are lost

What happens when process crashes

All of the above algorithms presented fail

We will revisit this problem

Christian Schindelhauer Distributed Systems 19. May 2014

schindel




4. Coordination and Agreement 4.3. Elections Page 15

4.3: Elections

Election Algorithm

An algorithm for choosing a unique process from a set of processes
p

1

, . . . , p
n

.

A process calls the election if it initiates a run of an election algorithm

Several elections could run in parallel where subset of processes are
participants or non-participants.

We assume processes have numeric IDs and that wlog. the process with the
highest will be chosen.

Requirements
E1: Safety During the run each participant has either elected

i

= ? or
elected

i

= P, where P is the non-crashed process with the
largest ID

E2: Liveness All participating processes p
i

eventually set elected
i

6= ?
or crash.

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.3. Elections Page 16

Ring-Based Election: Algorithm of Chang and Roberts
Each process p

i

has a
communication channel to the next
process in the ring p

(i+1) mod n

Messages are sent clockwise

Assumption: no failures occur

Non-participants are marked

When a process receives an election
message, it compares the identifier

If the arrived ID is greater, it

forwards it

if the arrived ID is smaller and

the process participates, it

replaces it with its ID

if the arrived ID equals the

process ID, the process is elected

and sends an elected message

around (with its ID).

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.3. Elections Page 17

Ring-Based Election: Algorithm of Chang and Roberts

E1 (Safety): follows directly

E2 (Liveness): follows in the
absence of crashes and
communication errors

Worst-case performance if a single
node participates in the process

Time: 3n � 1 messages for the
election

Not very practical algorithm
fault-prone and high
communication overhead

assumes a-priori knowledge (ring
topology)

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.3. Elections Page 18

The Bully Algorithm of Garcia & Molina

The distributed system is assumed to be synchronous
i.e. after a timeout period T a missing answer is interpreted as crash

reliable failure detector

fail-stop model

Message types
election: Announces an election

answer : Answers election message (contains ID)

coordinator : Announces the identity of the elected process

Any process may trigger an election

Every process receiving an election messages sends an answer and starts a
new one (if it has not started one before).

If a process knows it has the highest ID (based on the answers) it sends the
coordinator message to all processes

If answers of lower IDs fail to arrive within time T the sender considers
itself a coordinator and sends the coordinator message

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.3. Elections Page 19

The Bully Algorithm of Garcia & Molina

If a process receives an
election message it sends
back an answer messages
and begins another
election — if it has not
begun an election

If a process knows it has
the highest ID it sends the
coordinator message

New arriving processes
with higher ID

”
bully“

existing cordinators

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.3. Elections Page 20

The Bully Algorithm of Garcia & Molina

E2: liveness condition is guaranteed if messages are transmitted reliably

E1: safety condition: Not guaranteed if processes are replaced by processes
with the same identifier

di↵erent conclusions on which is the coordinator process

E1 not guaranteed if the timeout value is too small

In the worst case the algorithm needs O(n2) messages for n processes

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 21

4.4: Multicast communication

With a single call of multicast(g ,m) a process sends a message to all
members of the group g

Using deliver(m), received messages are delivered on participating processes

E�ciency

Number of messages, transmission time

Delivery guarantees

ordering

receipt

e.g. IP Multicast does not guarantee ordering of success

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel




schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 22

4.4: Multicast communication

System Model

multicast(g , m): sends the message m to all

members of group g
deliver(m): delivers a message to the process

(message has been received by lower level)

sender(m): sender of a message m (within the

message header)

group(m): group of a message m (within the

message header)

Allowed senders
closed group: senders must be members of a

group

open group: any process can send a message to

the group

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 23

Basic Multicast

B-multicast(g ,m): for each process p 2 g , send(p,m)

B-deliver(m): if message m is received at p return the message m

Ack Implosion

if too many processes participate

if send uses acknowledgments, some of them could be dropped

then the messages could be retransmitted

further acks are lost due to full bu↵ers etc.

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 24

Reliable Multicast

Safety: Integrity

Every message is delivered at most once

Receiver of m is a member of group(m)

Sender has initiated a multicast(g , m)

Liveness: Validity

If a correct process multicasts a messages then it eventually delivers m (to

itself)

Agreement

If a correct process delivers m then all other processes eventually deliver m

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 25

Implementing Reliable Multicast over Basic Multicast

Each message needs to be sent |g | times!

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 26

Implementing Reliable Multicast over IP Multicast

R-multicast(g ,m) for sending process p

Sender increments a (sending) sequence number Sp

g

for group g after each

messages

Sequence number sent with message

Acknowledgements of all received messages with hq, Rq

g

i are piggybacked

with message

Negative Acknowledgments: by received sequence number Rq

g

causes

retransmission of message

R-deliver(g) for receiving process q

Rq

g

is the sequence number of the latest message it has delivered.

it is sent with each acknowledgment and allows the sender (and all

receivers) to learn about missing messages

Process q delivers a message m (with piggybacked S) only if S = Rq

g

+ 1.

messages with S > Rq

g

+ 1 are kept in a hold-back queue

messages with S < Rg

g

+ 1 are erased

After delivery Rq

g

:= Rq

g

+ 1

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 27

Hold-Back Queue for Arriving Multicast Messages

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 28

Ordered Multicast

FIFO Ordering

If a process casts multicast(g , m) before multicast(g , m0
)

then m is delivered before m0

in each process of group g

Causal Ordering:

If multicast(g , m) ! multicast(g , m0
)

then m is delivered before m0

! is based only on messages within the group g

Total Ordering:

If a process delivers m before m0

then m is delivered before m0
on any other process of g

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 29

Total, FIFO and Causal Ordering

Total Ordering

FIFO Ordering

Causal Ordering

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 30

Bulletin Board

FIFO Ordering

Causal Ordering

Total Ordering

Christian Schindelhauer Distributed Systems 19. May 2014


	Coordination and Agreement
	Introduction
	Distributed Mutual Exclusion
	Elections
	Multicast communication
	Consensus

	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite

