University of Freiburg, Germany Department of Computer Science

Distributed Systems

Chapter 4 Coordination and Agreement

Christian Schindelhauer

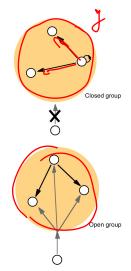
19. May 2014

4.4: Multicast communication

- With a single call of multicast(g, m) a process sends a message to all members of the group g
- Using *deliver*(*m*), received messages are delivered on participating processes
- Efficiency
 - Number of messages, transmission time
- Delivery guarantees
 - ordering
 - receipt
 - e.g. IP Multicast does not guarantee ordering of success

4.4: Multicast communication

- System Model
 - multicast(g, m): sends the message m to all members of group g
 - deliver(m): delivers a message to the process (message has been received by lower level)
 - sender(m): sender of a message m (within the message header)
 - group(m): group of a message m (within the message header)
- Allowed senders
 - closed group: senders must be members of a group
 - open group: any process can send a message to the group



Page 23

Basic Multicast

- *B*-multicast(g, m): for each process $p \in g$, send(p, m)
- B-deliver(m): if message m is received at p return the message m

Ack Implosion

- if too many processes participate
- if send uses acknowledgments, some of them could be dropped
- then the messages could be retransmitted
- further *acks* are lost due to full buffers etc.

Page 24

Reliable Multicast

- Safety: Integrity
 - Every message is delivered at most once
 - Receiver of m is a member of group(m)
 - Sender has initiated a multicast(g, m)
- Liveness: Validity
 - If a correct process multicasts a messages then it eventually delivers m (to itself)
- Agreement
 - If a correct process delivers m then all other processes eventually deliver m

Implementing Reliable Multicast over Basic Multicast

```
On initialization
   Received := \{\};
For process p to R-multicast message m to group g
   B-multicast(g, m); // p \in g is included as a destination
On B-deliver(m) at process q with g = group(m)
   if (m \notin Received)
   then
              Received := Received \cup {m};
              if (q \neq p) then B-multicast(g, m); end if
              R-deliver m;
   end if
```

Each message needs to be sent |g| times!

Implementing Reliable Multicast over IP Multicast

R-multicast(*g*, *m*) for sending process *p*

- Sender increments a (sending) sequence number S^p_g for group g after each messages
- Sequence number sent with message
- Acknowledgements of all received messages with $\langle q, R_g^q \rangle$ are piggybacked with message
- Negative Acknowledgments: by received sequence number R_g^q causes retransmission of message

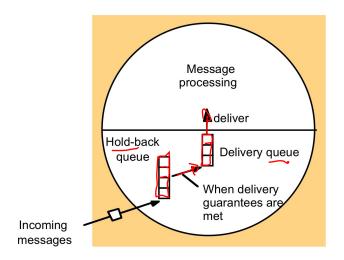
R-deliver(g) for receiving process q

- R_g^q is the sequence number of the latest message it has delivered.
- it is sent with each acknowledgment and allows the sender (and all receivers) to learn about missing messages
- Process q delivers a message m (with piggybacked S) only if $S = R_g^q + 1$.
- messages with $S > R_g^q + 1$ are kept in a hold-back queue
- messages with $S < R_g^q + 1$ are erased
- After delivery $R_g^q := \tilde{R}_g^q + 1$

イロン イヨン イヨン イヨン

Page 27

Hold-Back Queue for Arriving Multicast Messages

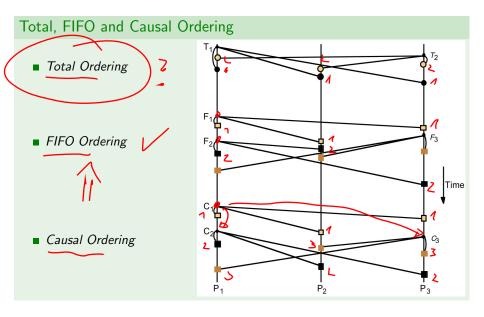


æ

Image: A match a ma

Ordered Multicast

- FIFO Ordering
 - If a process casts multicast(g, m) before multicast(g, m')
 - then m is delivered before m'
 - in each process of group g
- Causal Ordering:
 - If $\underline{\text{multicast}(g, m)} \rightarrow \underline{\text{multicast}(g, m')}$
 - then m is delivered before m'
 - $\blacksquare \rightarrow$ is based only on messages within the group g
- Total Ordering:
 - If a process delivers m before m'
 - then m is delivered before m' on any other process of g



Christian Schindelhauer

Distributed Systems

▶ ◀ ≧ ▶
 19. May 2014

æ

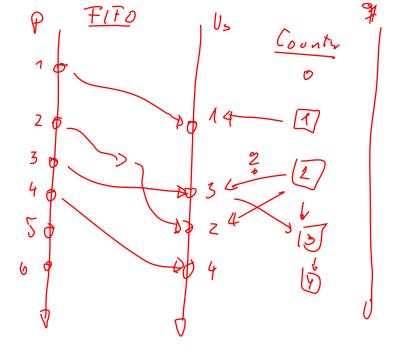
・ロト ・日下・ ・ ヨト

Ζ

			٧S		~	
Bulle	tin Board		1	A	GT	M
Bulletin board; os.interesting				4	11	1
Item	From	Subject	3	∕╏	<u>∕</u> ¶	
23	A.Hanlon	Mach	15.4			
24	G.Joseph	Microkernels	K	, se		b
25	A.Hanlon	Re: Microkernels	25	~ \$	1 0	
26	T.L'Heureux	RPC performance	4.1		+L	~9
27	M.Walker	Re: Mach		1_	\square	
end			4	1		
■ FIFO Ordering			4 27			6
 Causal Ordering 				1		
 Total Ordering 			U	Ŭ.	U V	U

æ

▲口> ▲圖> ▲注> ▲注>

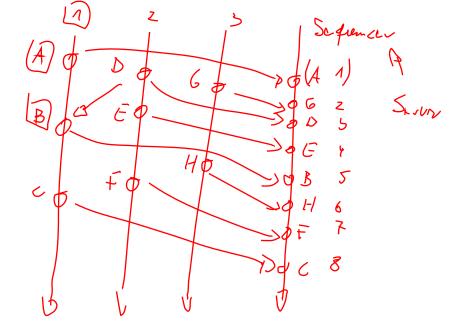


Implementing FIFO Ordering Multicast

Use sequence numbers for each message

- S_{g}^{p} for each sender process p and group g
- R^p_{σ} for the last message delivered to process p of group g
- Multicast over IP Multicast satisfies FIFO ordering
- Essential components for FIFO ordering:
 - Sender piggybacks $S_{\alpha}^{\overline{p}}$ on the message
 - Receiver checks wether received message satisfies $S = R_g^q + 1$ and delivers *m* and sets $R_g^q := R_g^q + 1$.

 - if $S > R_g^q + 1$ it puts *m* into the hold-back queue
- In combination with a reliable multicast we obtain a reliable FIFO ordering multicast algorithm



Implementing Total Ordering Multicast with a Sequencer

- 1. Algorithm for group member p
- A sequencer is an extra process taking care about ordering
- A sender process sends message with unique ID ito sequencer
- Sequencer marks message with ordering and multicasts the message

On initialization: $r_g := 0;$ To TO-multicast message m to group g *B*-multicast($g \cup \{sequencer(g)\}, <m, i>$);

On B-deliver(< m, i >) with g = group(m)Place < m, i > in hold-back queue;

On B-deliver($m_{order} = <$ "order", *i*, S>) with $g = group(m_{order})$ wait until < m, i > in hold-back queue and $S = r_{\alpha}$; *TO-deliver m*; // (after deleting it from the hold-back queue) $r_{\sigma} = S + 1;$

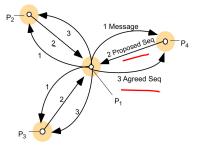
2. Algorithm for sequencer of gMO FIFO On initialization: $s_g := 0$; On B-deliver(< m, i >) with $g = group(m) \checkmark$ *B-multicast*(g, <"order", i, s_{α} >); $s_g := s_g + 1;$

Page 32

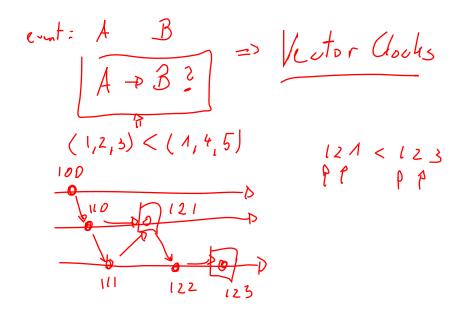
イロト イヨト イヨト イヨト

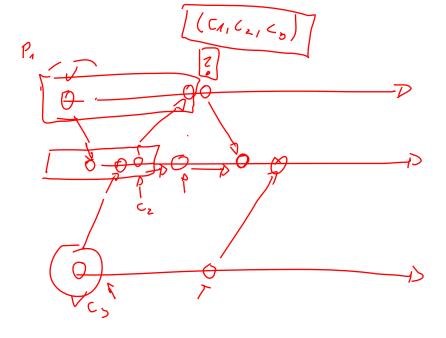
Implementing Total Ordering Multicast using ISIS

- Used in the ISIS toolkit of Birman & Joseph
- Each participating process proposes a sequence number for a messages
 - All proposed message numbers are unique
 - The sender chooses the maximum of all proposals and sends this information (piggybacked with the next messages)
 - This agreed sequence number defines the ordering of the hold-back-queue
 - The smallest elements of the hold-back queue can be delivered as the first element
- Does not imply causal nor FIFO ordering



Causal Ording



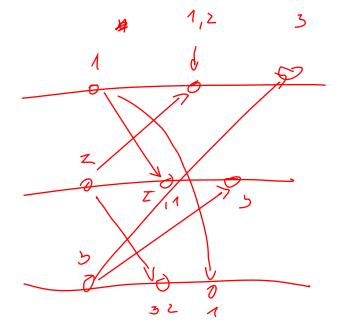


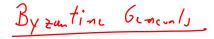
Implementing Causal Ordering

- Uses vector clocks to keep causal ordering (piggybacked to messages)
- Vector clock
 V^g_i[i] counts all multicast
 messages of process i in group g
- hold-back queue reflects vector clocks

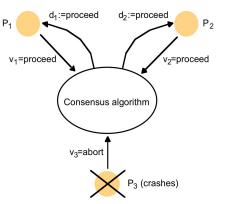
Algorithm for group member p_i (i = 1, 2..., N)On initialization $V_{i}^{g}[j] := 0 \ (j = 1, 2..., N);$ To CO-multicast message m to group g $V_{i}^{g}[i] := V_{i}^{g}[i] + 1;$ B-multicast(g, $\langle V_i^g, m \rangle$); On B-deliver($\langle V_j^g, m \rangle$) from p_j with g = group(m)place $\langle V_j^g, m \rangle$ in hold-back queue; wait until $V_{i}^{g}[j] = V_{i}^{g}[j] + 1$ and $V_{i}^{g}[k] \le V_{i}^{g}[k] (k \ne j);$ *CO-deliver m*; // after removing it from the hold-back queue $V_{i}^{g}[j] := V_{i}^{g}[j] + 1;$

Image: A match a ma





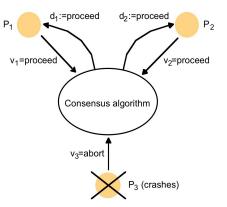
- *n* processes p_1, \ldots, p_n
- at most f processes have arbitrary (Byzantine) failures
- Every process starts in the <u>undecided</u> state and <u>proposes</u> a value v_i
- Eventually all correct processes p_i
 - choose the <u>decided state</u>
 - and choose the same value
 - $d_i \in \{v_1, \ldots, v_n\}$
 - and stay in this state



イロト イヨト イヨト イヨト

Consensus Problem

- Termination: Eventually each correct process p_i is decided by setting variable d_i
- Agreement: The decision value d_i of all correct processes is the same
- $\bigvee \bigcap \text{ Integrity: If all correct process} \\ \text{proposed the same value } v, \text{ then} \\ d_i = v \text{ for all correct } p_i \end{aligned}$
 - Possible decision functions: majority, minimum, maximum, ...
 - Byzantine failures can cause irritating and adversarial messages
 - System crashes may not be detected



< 🗇 🕨

.5. Consensus

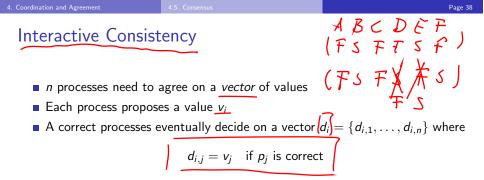
Byzantine Generals Problem

- n generals have to agree on attack or retreat
- one of them is the commander and issues the order
- at most f generals are traitors (possibly also the commander) and have adversarial behavior

Consensus Problem

- <u>Termination</u>: Eventually each correct process p_i is decided by setting variable d_i
- Agreement: The decision value d_i of all correct processes is the same
- Integrity: If the commander is correct then all correct processes choose the commander's proposal

・ロト ・同ト ・ヨト ・ヨト



Interactive Consistency

Termination: Eventually each correct process p_i is decided by setting variable d_i

• Agreement: The decision value d_i of all correct processes is the same

• Integrity: If the p_j is correct then all correct processes p_i set $d_{i,j} = v_j$

Page 39

The Relationship between Consensus Problems

Assume solutions to Consensus (C), Byzantine generals (BG), interactive consistency (IC)

$$C_i(v_1, \dots, v_n) = \text{consensus decision value of } p_i \text{ for proposals } v_i$$

$$BG_i(j, v) = BG \text{ decision value of } p_i \text{ for commander } p_j \text{ proposal } v_j$$

$$IC_i(v_1, \dots, v_n)[j] = j\text{-th position of interactive consistency}$$

$$decision \text{ vector of } p_i \text{ for proposals } v_i$$

Solving IC from BG

- In parallel *n* Byzantine generals problems are solved
- each process p_j acts as commander once

$$IC_i(v_1,\ldots,v_n)[j] = BG_i(j,v)$$

The Relationship between Consensus Problems Solving C from IC

• majority returns the most often parameter or \perp if no such value exists

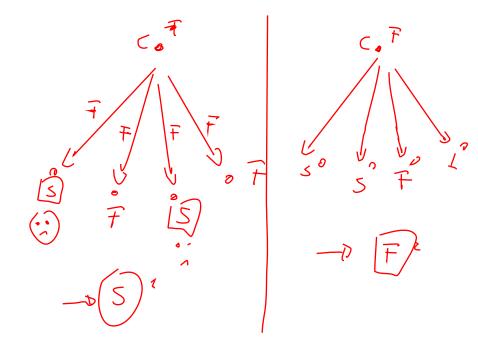
• for all
$$i = 1, ..., n$$

 $C_i(v_1, ..., v_n) = majority(IC_i(v_1, ..., v_n)[1], ..., IC_i(v_1, ..., v_n)[n])$

Solving *BG* from *C*

- The commander p_j sends its proposed value to itself and each other process
- All processes run consenus with the values v_1, \ldots, v_n received from the commander
- for all $i = 1, \ldots, n$

$$BG_i(j, v) = C_i(v_1, \ldots, v_n)$$



V1, UL1 U3-) (1, 1, 2) $\left[\Lambda,\Lambda,2\right]$ $\left(\Lambda, \Lambda, 2 \right)$ P1: 1 PZ: 1 P3:2

Consensus in a Synchronous System

- Assume that there are no arbitrary (Byzantine) errors
- Given a synchronous distributed systems (fail-stop model)
- Use basic multicast for f + 1 rounds
- Multicast all known values of all participants
- $Values_i^r$ denotes the set of proposed variables at the beginning of round r
- Reduce communication overhead by multicasting only freshly arrived variables Values^r_i - Values^{r-1}
- Choose the minimum of all known values as final value

Consensus in a Synchronous System

Algorithm for process $p_i \in g$; algorithm proceeds in f + 1 rounds

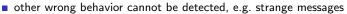
```
On initialization
     Values_{i}^{1} := \{v_{i}\}; Values_{i}^{0} = \{\};
In round r (1 \le r \le f + 1)
    B-multicast(g, Values_i^r - Values_i^{r-1}); // Send only values that have not been sent Values_i^{r+1} := Values_i^r;
    while (in round r)
                      On B-deliver(V_j) from some p_j
Values<sub>i</sub><sup>r+1</sup> := Values<sub>i</sub><sup>r+1</sup> \cup V_j;
After (f+1) rounds
    Assign d_i = minimum(Values_i^{f+1});
```

Consensus in a Synchronous System

- There are no arbitrary errors only processes that crash and are correctly detected
- Given a synchronous distributed systems (fail-stop model)
- Correctness
 - Assume that two processes p_i and p_j have different values at round r
 - Then, in round r 1 at least one process p_k has sent different values to p_i and p_j
 - Then, *p_k* has crashed in this round
 - Since the number of crashes is limited to f there are not enough crashes to cover each of the f + 1 rounds

Byzantine Generals Problem in a Synchronous System

- Assume that there are Byzantine errors
- Given a synchronous distributed system
 - crashes are detected



- messages are not (digitally) signed
- at most f faulty processes

Impossibility of a solution of the Byzantine generals problem [Lamport, Shostak, Pease 1982]

- The byzantine generals problem cannot be solved for n = 3 and f = 1.
- The byzantine generals problem cannot be solved for $n \leq 3f$.

End of Section 4

Christian Schindelhauer

æ

・ロ・・ (日・・ (日・・ (日・)