University of Freiburg, Germany
Department of Computer Science

Distributed Systems

Chapter 4 Coordination and Agreement

Christian Schindelhauer

19. May 2014
4.4: Multicast communication

- With a single call of $\text{multicast}(g, m)$ a process sends a message to all members of the group g
- Using $\text{deliver}(m)$, received messages are delivered on participating processes
- **Efficiency**
 - Number of messages, transmission time
- **Delivery guarantees**
 - ordering
 - receipt
 - e.g. IP Multicast does not guarantee ordering or success
4.4: Multicast communication

- **System Model**
 - \(multicast(g, m) \): sends the message \(m \) to all members of group \(g \)
 - \(deliver(m) \): delivers a message to the process (message has been received by lower level)
 - \(sender(m) \): sender of a message \(m \) (within the message header)
 - \(group(m) \): group of a message \(m \) (within the message header)

- **Allowed senders**
 - closed group: senders must be members of a group
 - open group: any process can send a message to the group
Basic Multicast

- $B\text{-}multicast (g, m)$: for each process $p \in g$, send(p, m)
- $B\text{-}deliver (m)$: if message m is received at p return the message m

Ack Implosion

- if too many processes participate
- if send uses acknowledgments, some of them could be dropped
- then the messages could be retransmitted
- further acks are lost due to full buffers etc.
Reliable Multicast

- **Safety: Integrity**
 - Every message is delivered at most once
 - Receiver of \(m \) is a member of \(\text{group}(m) \)
 - Sender has initiated a \(\text{multicast}(g, m) \)

- **Liveness: Validity**
 - If a correct process multicasts a messages then it eventually delivers \(m \) (to itself)

- **Agreement**
 - If a correct process delivers \(m \) then all other processes eventually deliver \(m \)
Implementing Reliable Multicast over Basic Multicast

On initialization

\[
\text{Received} := \{\};
\]

For process \(p \) to R-multicast message \(m \) to group \(g \)

\[
\text{B-multicast}(g, m); \quad \text{// } p \in g \text{ is included as a destination}
\]

On B-deliver\((m) \) at process \(q \) with \(g = \text{group}(m) \)

\[
\text{if } (m \not\in \text{Received})
\]

\[
\text{then}
\]

\[
\text{Received} := \text{Received} \cup \{m\};
\]

\[
\text{if } (q \neq p) \text{ then B-multicast}(g, m); \text{ end if}
\]

\[
\text{R-deliver } m;
\]

\[
\text{end if}
\]

Each message needs to be sent \(|g|\) times!
Implementing Reliable Multicast over IP Multicast

- **R-multicast(g, m)** for sending process p
 - Sender increments a (sending) sequence number S^p_g for group g after each message
 - Sequence number sent with message
 - Acknowledgements of all received messages with $\langle q, R^q_g \rangle$ are piggybacked with message
 - Negative Acknowledgments: by received sequence number R^q_g causes retransmission of message

- **R-deliver(g)** for receiving process q
 - R^q_g is the sequence number of the latest message it has delivered.
 - It is sent with each acknowledgment and allows the sender (and all receivers) to learn about missing messages
 - Process q delivers a message m (with piggybacked S) only if $S = R^q_g + 1$.
 - Messages with $S > R^q_g + 1$ are kept in a hold-back queue
 - Messages with $S < R^q_g + 1$ are erased
 - After delivery $R^q_g := R^q_g + 1$
Hold-Back Queue for Arriving Multicast Messages

 Incoming messages

 Hold-back queue

 Delivery queue

 Message processing

 When delivery guarantees are met

 deliver
Ordered Multicast

- **FIFO Ordering**
 - If a process casts \text{multicast}(g, m) before \text{multicast}(g, m')
 - then \(m\) is delivered before \(m'\)
 - in each process of group \(g\)

- **Causal Ordering**:
 - If \(\text{multicast}(g, m) \rightarrow \text{multicast}(g, m')\)
 - then \(m\) is delivered before \(m'\)
 - \(\rightarrow\) is based only on messages within the group \(g\)

- **Total Ordering**:
 - If a process delivers \(m\) before \(m'\)
 - then \(m\) is delivered before \(m'\) on any other process of \(g\)
Total, FIFO and Causal Ordering

- Total Ordering
- FIFO Ordering
- Causal Ordering
Bulletin Board

<table>
<thead>
<tr>
<th>Item</th>
<th>From</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>A. Hanlon</td>
<td>Mach</td>
</tr>
<tr>
<td>24</td>
<td>G. Joseph</td>
<td>Microkernels</td>
</tr>
<tr>
<td>25</td>
<td>A. Hanlon</td>
<td>Re: Microkernels</td>
</tr>
<tr>
<td>26</td>
<td>T. L’Heureux</td>
<td>RPC performance</td>
</tr>
<tr>
<td>27</td>
<td>M. Walker</td>
<td>Re: Mach</td>
</tr>
<tr>
<td>end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **FIFO Ordering**
- **Causal Ordering**
- **Total Ordering**
Implementing FIFO Ordering Multicast

- Use sequence numbers for each message
 - S_p^g for each sender process p and group g
 - R_p^g for the last message delivered to process p of group g
- Multicast over IP Multicast satisfies FIFO ordering
- Essential components for FIFO ordering:
 - Sender piggybacks S_p^g on the message
 - Receiver checks whether received message satisfies $S = R_q^g + 1$
 - and delivers m and sets $R_q^g := R_q^g + 1$.
 - if $S > R_q^g + 1$ it puts m into the hold-back queue
- In combination with a reliable multicast we obtain a reliable FIFO ordering multicast algorithm
Implementing Total Ordering Multicast with a Sequencer

1. Algorithm for group member p

On initialization:\ $r_g := 0$;

To TO-multicast message m to group g:\
$\text{B-multicast}(g \cup \{\text{sequencer}(g)\}, <m, i>)$;

On B-deliver($<m, i>$) with $g = \text{group}(m)$:\
Place $<m, i>$ in hold-back queue;

On B-deliver($m_{\text{order}} = <\text{"order"}, i, S>\text{)}$ with $g = \text{group}(m_{\text{order}})$ wait until $<m, i>$ in hold-back queue and $S = r_g$;
$\text{TO-deliver } m$; // (after deleting it from the hold-back queue)\n$r_g = S + 1$;

2. Algorithm for sequencer of g

On initialization:\ $s_g := 0$;

On B-deliver($<m, i>$) with $g = \text{group}(m)$:\
$\text{B-multicast}(g, <\text{"order"}, i, s_g>)$;
$s_g := s_g + 1$;

- A sequencer is an extra process taking care about ordering
- A sender process sends message with unique ID i to sequencer
- Sequencer marks message with ordering and multicasts the message
Implementing Total Ordering Multicast using ISIS

- Used in the ISIS toolkit of Birman & Joseph
- Each participating process proposes a sequence number for a message
 - All proposed message numbers are unique
 - The sender chooses the maximum of all proposals and sends this information (piggybacked with the next messages)
 - This agreed sequence number defines the ordering of the hold-back-queue
 - The smallest elements of the hold-back queue can be delivered as the first element
- Does not imply causal nor FIFO ordering
Causal Ordering

\[(1, 2, 3) < (1, 4, 5) \]

\[121 < 123 \]

Vector Clocks
Implementing Causal Ordering

- Uses vector clocks to keep causal ordering (piggybacked to messages)
- Vector clock $V^g_i[j]$ counts all multicast messages of process i in group g
- Hold-back queue reflects vector clocks

Algorithm for group member p_i ($i = 1, 2..., N$)

On initialization

$V_i^g[j] := 0$ ($j = 1, 2..., N$);

To CO-multicast message m to group g

$V_i^g[i] := V_i^g[i] + 1$;

B-multicast(g, $<V_i^g, m>$);

On B-deliver($<V_j^g, m>$) from p_j, with $g = \text{group}(m)$

place $<V_j^g, m>$ in hold-back queue;

wait until $V_j^g[j] = V_i^g[j] + 1$ and $V_j^g[k] \leq V_i^g[k]$ ($k \neq j$);

CO-deliver m; // after removing it from the hold-back queue

$V_i^g[j] := V_i^g[j] + 1$;
4.5: Consensus

- \(n \) processes \(p_1, \ldots, p_n \)
- at most \(f \) processes have arbitrary (Byzantine) failures
- Every process starts in the undecided state and proposes a value \(v_i \)
- Eventually all correct processes \(p_i \)
 - choose the decided state
 - and choose the same value \(d_i \in \{v_1, \ldots, v_n\} \)
 - and stay in this state
Consensus Problem

- **Termination**: Eventually each correct process p_i is decided by setting variable d_i.
- **Agreement**: The decision value d_i of all correct processes is the same.
- **Integrity**: If all correct process proposed the same value v, then $d_i = v$ for all correct p_i.

- Possible decision functions: *majority, minimum, maximum, ...*
- Byzantine failures can cause irritating and adversarial messages
- System crashes may not be detected
Byzantine Generals Problem

- n generals have to agree on attack or retreat
- one of them is the commander and issues the order
- at most f generals are traitors (possibly also the commander) and have adversarial behavior
- all correct generals have eventually to agree on the commander decision if he acts correctly

Consensus Problem

- **Termination**: Eventually each correct process p_i is decided by setting variable d_i
- **Agreement**: The decision value d_i of all correct processes is the same
- **Integrity**: If the commander is correct then all correct processes choose the commander’s proposal
Interactive Consistency

- n processes need to agree on a *vector* of values
- Each process proposes a value v_i
- A correct processes eventually decide on a vector $d_i = \{d_{i,1}, \ldots, d_{i,n}\}$ where

 \[d_{i,j} = v_j \quad \text{if } p_j \text{ is correct} \]

Interactive Consistency

- **Termination**: Eventually each correct process p_i is *decided* by setting variable d_i
- **Agreement**: The decision value d_i of all correct processes is the same
- **Integrity**: If the p_j is correct then all correct processes p_i set $d_{i,j} = v_j$
The Relationship between Consensus Problems

Assume solutions to Consensus (C), Byzantine generals (BG), interactive consistency (IC)

\[
C_i(v_1, \ldots, v_n) = \text{consensus decision value of } p_i \text{ for proposals } v_i \\
BG_i(j, v) = \text{BG decision value of } p_i \text{ for commander } p_j \text{ proposal } v_j \\
IC_i(v_1, \ldots, v_n)[j] = j\text{-th position of interactive consistency decision vector of } p_i \text{ for proposals } v_i
\]

Solving IC from BG

- In parallel n Byzantine generals problems are solved
- each process \(p_j \) acts as commander once

\[
IC_i(v_1, \ldots, v_n)[j] = BG_i(j, v)
\]
The Relationship between Consensus Problems

Solving \(C \) from \(IC \)

- \textit{majority} returns the most often parameter or \(\perp \) if no such value exists
- for all \(i = 1, \ldots, n \)
 \[
 C_i(v_1, \ldots, v_n) = \text{majority}(IC_i(v_1, \ldots, v_n)[1], \ldots, IC_i(v_1, \ldots, v_n)[n])
 \]

Solving \(BG \) from \(C \)

- The commander \(p_j \) sends its proposed value to itself and each other process
- All processes run consensus with the values \(v_1, \ldots, v_n \) received from the commander
- for all \(i = 1, \ldots, n \)
 \[
 BG_i(j, v) = C_i(v_1, \ldots, v_n)
 \]
Consensus in a Synchronous System

- Assume that there are no arbitrary (Byzantine) errors
- Given a synchronous distributed systems (fail-stop model)
- Use basic multicast for $f + 1$ rounds
- Multicast all known values of all participants
- $Values^r_i$ denotes the set of proposed variables at the beginning of round r
- Reduce communication overhead by multicasting only freshly arrived variables $Values^r_i - Values^{r-1}_i$
- Choose the minimum of all known values as final value
Consensus in a Synchronous System

Algorithm for process $p_i \in g$; algorithm proceeds in $f + 1$ rounds

On initialization

$$\begin{align*}
\text{Values}_i^1 &:= \{v_i\}; \quad \text{Values}_i^0 = \{\};
\end{align*}$$

In round r ($1 \leq r \leq f + 1$)

$$\text{B-multicast}(g, \text{Values}_i^r - \text{Values}_i^{r-1});$$ // Send only values that have not been sent

$$\text{Values}_i^{r+1} := \text{Values}_i^r;$$

while (in round r)

$$\begin{align*}
\text{On B-deliver}(V_j) \text{ from some } p_j
\end{align*}$$

$$\text{Values}_i^{r+1} := \text{Values}_i^{r+1} \cup V_j;$$

After $(f + 1)$ rounds

Assign $d_i = \min(\text{Values}_i^{f+1});$
Consensus in a Synchronous System

- There are no arbitrary errors only processes that crash and are correctly detected.
- Given a synchronous distributed systems (fail-stop model).
- Correctness
 - Assume that two processes p_i and p_j have different values at round r.
 - Then, in round $r - 1$ at least one process p_k has sent different values to p_i and p_j.
 - Then, p_k has crashed in this round.
 - Since the number of crashes is limited to f there are not enough crashes to cover each of the $f + 1$ rounds.
Byzantine Generals Problem in a Synchronous System

- Assume that there are Byzantine errors
- Given a synchronous distributed system
 - crashes are detected
 - other wrong behavior cannot be detected, e.g. strange messages
- messages are not (digitally) signed
- at most \(f \) faulty processes

Impossibility of a solution of the Byzantine generals problem [Lamport, Shostak, Pease 1982]

- The byzantine generals problem cannot be solved for \(n = 3 \) and \(f = 1 \).
- The byzantine generals problem cannot be solved for \(n \leq 3f \).
End of Section 4