
3. Page 1

University of Freiburg, Germany

Department of Computer Science

Distributed Systems

Chapter 4 Coordination and Agreement

Christian Schindelhauer

19. May 2014

Christian Schindelhauer Distributed Systems 19. May 2014



4. Coordination and Agreement 4.4. Multicast communication Page 21

4.4: Multicast communication

With a single call of multicast(g ,m) a process sends a message to all
members of the group g

Using deliver(m), received messages are delivered on participating processes

E�ciency

Number of messages, transmission time

Delivery guarantees

ordering

receipt

e.g. IP Multicast does not guarantee ordering of success

Christian Schindelhauer Distributed Systems 19. May 2014



4. Coordination and Agreement 4.4. Multicast communication Page 22

4.4: Multicast communication

System Model

multicast(g , m): sends the message m to all

members of group g
deliver(m): delivers a message to the process

(message has been received by lower level)

sender(m): sender of a message m (within the

message header)

group(m): group of a message m (within the

message header)

Allowed senders
closed group: senders must be members of a

group

open group: any process can send a message to

the group

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 23

Basic Multicast

B-multicast(g ,m): for each process p 2 g , send(p,m)

B-deliver(m): if message m is received at p return the message m

Ack Implosion

if too many processes participate

if send uses acknowledgments, some of them could be dropped

then the messages could be retransmitted

further acks are lost due to full bu↵ers etc.

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 24

Reliable Multicast

Safety: Integrity

Every message is delivered at most once

Receiver of m is a member of group(m)

Sender has initiated a multicast(g , m)

Liveness: Validity

If a correct process multicasts a messages then it eventually delivers m (to

itself)

Agreement

If a correct process delivers m then all other processes eventually deliver m

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 25

Implementing Reliable Multicast over Basic Multicast

Each message needs to be sent |g | times!

Christian Schindelhauer Distributed Systems 19. May 2014

schindel




4. Coordination and Agreement 4.4. Multicast communication Page 26

Implementing Reliable Multicast over IP Multicast

R-multicast(g ,m) for sending process p

Sender increments a (sending) sequence number Sp

g

for group g after each

messages

Sequence number sent with message

Acknowledgements of all received messages with hq, Rq

g

i are piggybacked

with message

Negative Acknowledgments: by received sequence number Rq

g

causes

retransmission of message

R-deliver(g) for receiving process q

Rq

g

is the sequence number of the latest message it has delivered.

it is sent with each acknowledgment and allows the sender (and all

receivers) to learn about missing messages

Process q delivers a message m (with piggybacked S) only if S = Rq

g

+ 1.

messages with S > Rq

g

+ 1 are kept in a hold-back queue

messages with S < Rq

g

+ 1 are erased

After delivery Rq

g

:= Rq

g

+ 1

Christian Schindelhauer Distributed Systems 19. May 2014



4. Coordination and Agreement 4.4. Multicast communication Page 27

Hold-Back Queue for Arriving Multicast Messages

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 28

Ordered Multicast

FIFO Ordering

If a process casts multicast(g , m) before multicast(g , m0
)

then m is delivered before m0

in each process of group g

Causal Ordering:

If multicast(g , m) ! multicast(g , m0
)

then m is delivered before m0

! is based only on messages within the group g

Total Ordering:

If a process delivers m before m0

then m is delivered before m0
on any other process of g

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 29

Total, FIFO and Causal Ordering

Total Ordering

FIFO Ordering

Causal Ordering

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 30

Bulletin Board

FIFO Ordering

Causal Ordering

Total Ordering

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 31

Implementing FIFO Ordering Multicast

Use sequence numbers for each message
Sp

g

for each sender process p and group g
Rp

g

for the last message delivered to process p of group g

Multicast over IP Multicast satisfies FIFO ordering

Essential components for FIFO ordering:
Sender piggybacks Sp

g

on the message

Receiver checks wether received message satisfies S = Rq

g

+ 1

and delivers m and sets Rq

g

:= Rq

g

+ 1.

if S > Rq

g

+ 1 it puts m into the hold-back queue

In combination with a reliable multicast we obtain a reliable FIFO ordering
multicast algorithm

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 32

Implementing Total Ordering Multicast with a Sequencer

A sequencer is an
extra process
taking care about
ordering

A sender process
sends message
with unique ID i
to sequencer

Sequencer marks
message with
ordering and
multicasts the
message

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 33

Implementing Total Ordering Multicast using ISIS

Used in the ISIS toolkit of Birman &
Joseph

Each participating process proposes a
sequence number for a messages

All proposed message numbers are unique

The sender chooses the maximum of all

proposals and sends this information

(piggybacked with the next messages)

This agreed sequence number defines the

ordering of the hold-back-queue

The smallest elements of the hold-back

queue can be delivered as the first

element

Does not imply causal nor FIFO ordering

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.4. Multicast communication Page 34

Implementing Causal Ordering

Uses vector

clocks to keep

causal ordering

(piggybacked to

messages)

Vector clock

V g

i

[i ] counts all

multicast

messages of

process i in

group g

hold-back queue

reflects vector

clocks

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.5. Consensus Page 35

4.5: Consensus

n processes p
1

, . . . , p
n

at most f processes have arbitrary
(Byzantine) failures

Every process starts in the
undecided state and proposes a
value v

i

Eventually all correct processes p
i

choose the decided state

and choose the same value

d
i

2 {v
1

, . . . , v
n

}
and stay in this state

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.5. Consensus Page 36

Consensus Problem

Termination: Eventually each
correct process p

i

is decided by
setting variable d

i

Agreement: The decision value d
i

of all correct processes is the same

Integrity: If all correct process
proposed the same value v , then
d

i

= v for all correct p
i

Possible decision functions:
majority, minimum, maximum, . . .

Byzantine failures can cause
irritating and adversarial messages

System crashes may not be
detected

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.5. Consensus Page 37

Byzantine Generals Problem

n generals have to agree on attack or retreat

one of them is the commander and issues the order

at most f generals are traitors (possibly also the commander) and have
adversarial behavior

all correct generals have eventually to agree on the commander decision if
he acts correctly

Consensus Problem

Termination: Eventually each correct process p
i

is decided by setting
variable d

i

Agreement: The decision value d
i

of all correct processes is the same

Integrity: If the commander is correct then all correct processes choose the
commander’s proposal

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.5. Consensus Page 38

Interactive Consistency

n processes need to agree on a vector of values

Each process proposes a value v
i

A correct processes eventually decide on a vector d
i

= {d
i,1, . . . , di,n} where

d
i,j = v

j

if p
j

is correct

Interactive Consistency

Termination: Eventually each correct process p
i

is decided by setting
variable d

i

Agreement: The decision value d
i

of all correct processes is the same

Integrity: If the p
j

is correct then all correct processes p
i

set d
i,j = v

j

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.5. Consensus Page 39

The Relationship between Consensus Problems

Assume solutions to Consensus (C), Byzantine generals (BG), interactive
consistency (IC)

C
i

(v
1

, . . . , v
n

) = consensus decision value of p
i

for proposals v
i

BG
i

(j , v) = BG decision value of p
i

for commander p
j

proposal v
j

IC
i

(v
1

, . . . , v
n

)[j ] = j-th position of interactive consistency
decision vector of p

i

for proposals v
i

Solving IC from BG

In parallel n Byzantine generals problems are solved

each process p
j

acts as commander once

IC
i

(v
1

, . . . , v
n

)[j ] = BG
i

(j , v)

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.5. Consensus Page 40

The Relationship between Consensus Problems

Solving C from IC

majority returns the most often parameter or ? if no such value exists

for all i = 1, . . . , n

C
i

(v
1

, . . . , v
n

) = majority(IC
i

(v
1

, . . . , v
n

)[1], . . . , IC
i

(v
1

, . . . , v
n

)[n])

Solving BG from C

The commander p
j

sends its proposed value to itself and each other process

All processes run consenus with the values v
1

, . . . , v
n

received from the
commander

for all i = 1, . . . , n
BG

i

(j , v) = C
i

(v
1

, . . . , v
n

)

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.5. Consensus Page 41

Consensus in a Synchronous System

Assume that there are no arbitrary (Byzantine) errors

Given a synchronous distributed systems (fail-stop model)

Use basic multicast for f + 1 rounds

Multicast all known values of all participants

Valuesr
i

denotes the set of proposed variables at the beginning of round r

Reduce communication overhead by multicasting only freshly arrived
variables Valuesr

i

� Valuesr�1

i

Choose the minimum of all known values as final value

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.5. Consensus Page 42

Consensus in a Synchronous System

Christian Schindelhauer Distributed Systems 19. May 2014

schindel




4. Coordination and Agreement 4.5. Consensus Page 43

Consensus in a Synchronous System

There are no arbitrary errors only processes that crash and are correctly
detected

Given a synchronous distributed systems (fail-stop model)

Correctness
Assume that two processes p

i

and p
j

have di↵erent values at round r
Then, in round r � 1 at least one process p

k

has sent di↵erent values to p
i

and p
j

Then, p
k

has crashed in this round

Since the number of crashes is limited to f there are not enough crashes to

cover each of the f + 1 rounds

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.5. Consensus Page 44

Byzantine Generals Problem in a Synchronous System

Assume that there are Byzantine errors

Given a synchronous distributed system
crashes are detected

other wrong behavior cannot be detected, e.g. strange messages

messages are not (digitally) signed

at most f faulty processes

Impossibility of a solution of the Byzantine generals problem
[Lamport, Shostak, Pease 1982]

The byzantine generals problem cannot be solved for n = 3 and f = 1.

The byzantine generals problem cannot be solved for n  3f .

Christian Schindelhauer Distributed Systems 19. May 2014

schindel


schindel


schindel


schindel


schindel


schindel


schindel




4. Coordination and Agreement 4.5. Consensus Page 49

End of Section 4

Christian Schindelhauer Distributed Systems 19. May 2014


	Coordination and Agreement
	Introduction
	Distributed Mutual Exclusion
	Elections
	Multicast communication
	Consensus

	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite

