University of Freiburg, Germany Department of Computer Science

Distributed Systems

Chapter 4 Coordination and Agreement

Christian Schindelhauer

19. May 2014

Implementing Causal Ordering

- Uses vector clocks to keep causal ordering (piggybacked to messages)
- Vector clock
 V^g_i[i] counts all
 multicast
 messages of
 process i in
 group g
- hold-back queue reflects vector clocks

Algorithm for group member p_i (i = 1, 2..., N) *On initialization* $V_i^g[j] := 0$ (j = 1, 2..., N); *To CO-multicast message m to group g* $V_i^g[i] := V_i^g[i] + 1$; *B-multicast* $(g, <V_i^g, m>)$; *On B-deliver* $(<V_j^g, m>)$ *from p*_j, *with g = group(m)* place $<V_j^g, m>$ in hold-back queue; wait until $V_j^g[j] = V_i^g[j] + 1$ and $V_j^g[k] \le V_i^g[k]$ $(k \ne j)$; *CO-deliver m*; // after removing it from the hold-back queue $V_i^g[j] := V_i^g[j] + 1$;

4.5: Consensus

- *n* processes p_1, \ldots, p_n
- at most f processes have arbitrary (Byzantine) failures
- Every process starts in the undecided state and proposes a value v_i
- Eventually all correct processes p_i
 - choose the *decided* state
 - and choose the same value $d_i \in \{v_1, \ldots, v_n\}$
 - and stay in this state

・ロト ・日下・ ・ ヨト

Consensus Problem

- Termination: Eventually each correct process p_i is decided by setting variable d_i
- Agreement: The decision value d_i of all correct processes is the same
- Integrity: If all correct process proposed the same value v, then d_i = v for all correct p_i
- Possible decision functions: majority, minimum, maximum, ...
- Byzantine failures can cause irritating and adversarial messages
- System crashes may not be detected

Byzantine Generals Problem

- n generals have to agree on attack or retreat
- one of them is the commander and issues the order
- at most *f* generals are traitors (possibly also the commander) and have adversarial behavior
- all correct generals have eventually to agree on the commander decision if he acts correctly

Consensus Problem

- Termination: Eventually each correct process p_i is decided by setting variable d_i
- Agreement: The decision value d_i of all correct processes is the same
- Integrity: If the commander is correct then all correct processes choose the commander's proposal

Interactive Consistency

n processes need to agree on a vector of values

1

- Each process proposes a value v_i
- A correct processes eventually decide on a vector $d_i = \{d_{i,1}, \ldots, d_{i,n}\}$ where

$$d_{i,j} = v_j$$
 if p_j is correct

Interactive Consistency

- Termination: Eventually each correct process p_i is decided by setting variable d_i
- Agreement: The decision value d_i of all correct processes is the same
- Integrity: If the p_j is correct then all correct processes p_i set $d_{i,j} = v_j$

Page 39

The Relationship between Consensus Problems

Assume solutions to Consensus (C), Byzantine generals (BG), interactive consistency (IC)

- $C_i(v_1, \ldots, v_n)$ = consensus decision value of p_i for proposals v_i
 - $BG_i(j, v) = BG$ decision value of p_i for commander p_j proposal v_j
- $IC_i(v_1, \ldots, v_n)[j] = j$ -th position of interactive consistency decision vector of p_i for proposals v_i

Solving IC from BG

- In parallel *n* Byzantine generals problems are solved
- each process p_j acts as commander once

$$IC_i(v_1,\ldots,v_n)[j] = BG_i(j,v)$$

The Relationship between Consensus Problems

Solving C from IC

- majority returns the most often parameter or \perp if no such value exists
- for all $i = 1, \ldots, n$

$$C_i(v_1,\ldots,v_n) = \textit{majority}(IC_i(v_1,\ldots,v_n)[1],\ldots,IC_i(v_1,\ldots,v_n)[n])$$

Solving BG from C

- The commander p_j sends its proposed value to itself and each other process
- All processes run consenus with the values v_1, \ldots, v_n received from the commander
- for all $i = 1, \ldots, n$

$$BG_i(j, v) = C_i(v_1, \ldots, v_n)$$

Consensus in a Synchronous System

- Assume that there are no arbitrary (Byzantine) errors
- Given a synchronous distributed systems (fail-stop model)
- Use basic multicast for f + 1 rounds
- Multicast all known values of all participants
- $Values_i^r$ denotes the set of proposed variables at the beginning of round r
- Reduce communication overhead by multicasting only freshly arrived variables Values^r_i - Values^{r-1}
- Choose the minimum of all known values as final value

Consensus in a Synchronous System

Algorithm for process $p_i \in g$; algorithm proceeds in f + 1 rounds

```
On initialization
     Values_{i}^{1} := \{v_{i}\}; Values_{i}^{0} = \{\};
In round r (1 \le r \le f + 1)
    B-multicast(g, Values_i^r - Values_i^{r-1}); // Send only values that have not been sent Values_i^{r+1} := Values_i^r;
    while (in round r)
                      On B-deliver(V_j) from some p_j
Values<sub>i</sub><sup>r+1</sup> := Values<sub>i</sub><sup>r+1</sup> \cup V_j;
After (f+1) rounds
    Assign d_i = minimum(Values_i^{f+1});
```

Consensus in a Synchronous System

- There are no arbitrary errors only processes that crash and are correctly detected
- Given a synchronous distributed systems (fail-stop model)
- Correctness
 - Assume that two processes p_i and p_j have different values at round r
 - Then, in round r 1 at least one process p_k has sent different values to p_i and p_j
 - Then, *p_k* has crashed in this round
 - Since the number of crashes is limited to f there are not enough crashes to cover each of the f + 1 rounds

Page 44

Byzantine Generals Problem in a Synchronous System

- Assume that there are **Byzantine** errors
- Given a synchronous distributed system
 - crashes are detected
 - other wrong behavior cannot be detected, e.g. strange messages
- messages are not (digitally) signed
- at most f faulty processes

Impossibility of a solution of the Byzantine generals problem [Lamport, Shostak, Pease 1982]

- The byzantine generals problem cannot be solved for n = 3 and f = 1.
- The byzantine generals problem cannot be solved for $n \leq 3f$.

Byzantine Generals Problem in a Synchronous System

Impossibility of a solution of the Byzantine generals problem for n = 3

- The byzantine generals problem with arbitrary failures cannot be solved for n = 3 and f = 1 in a synchronous system.
 - a faulty commander sending different values to his generals
 - cannot be distinguished from a faulty general forwarding wrong values

Solution of the Byzantine Generals Problem

- Assume that there are **Byzantine** errors
- Given a synchronous distributed system
- messages are not (digitally) signed
- at most f faulty processes

Solution of the Byzantine generals problem [Pease, Shostak, Lamport 1980]

- The byzantine generals problem can be solved for n = 4 and f = 1.
- The byzantine generals problem can be solved for $n \ge 3f + 1$.

Solution for Four Generals and One Faulty Process

• The byzantine generals problem can be solved for $n \ge 4$ and f = 1.

Algorithm of Pease et al.

- The commander sends a value to all other generals (lieutenants)
- 2 All lieutenants send the received value to all other lieutenants
- 3 The commander chooses its value; the lieutenants compute the majority of all received values
- Since *n* ≥ 4 the majority function always can be computed if at most one process is faulty
- If the commander crashes very early then all lieutenants agree on \perp

More About the Byzantine Generals Problems

• For f > 1 the algorithm can be used recursively

- Complexity: f + 1 rounds and $O(n^{f+1})$ messages
- The time complexity of f + 1 rounds is optimal

😚 With the help of signed messages

- any number of faulty generals f < n can be dealt with
- with signed messages the Byzantine Generals problem can be solved in f + 1 rounds with $O(n^2)$ messages [Dolev & Strong 1983]
- For asynchronous systems with crash failures
 - No algorithm can reach consensus even if only **one processor** is faulty [Fischer, Lynch, Paterson 1985]
 - Each algorithm that tries to reach consensus can be confronted with a faulty process which influences the result if it continues (instead of crashing)

End of Section 4

Christian Schindelhauer

æ

・ロ・・ (日・・ (日・・ (日・)