
6. Introduction Page 1

Chapter 6: Introduction

Distributed Applications - Motivation

Why do we want to make our applications distributed?

Applications are inherently distributed.

A distributed system is more reliable.

A distributed system performs better.

A distributed system scales better.

Only paradigm to support use cases like Google, Facebook and Amazon!

Data-Centric Distributed Applications

Union of two technologies:

Database Systems + Distributed Systems

Database systems provide

data independence (physical & logical)
centralized and controlled data access
integration

Distributed System provide scaling
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Goals of Data-Centric Distributed Applications

1 Transparent management of distributed and replicated data

2 Reliability/availability through distributed transactions

3 Improved performance

4 Easier and more economical system expansion

Focus of this course: Distributed transactions!
If you are interested in the other aspects, visit my course in the winter term.

Challenges of Distributed/Replicated Data

Storing copies of data on different nodes enables availability, performance and reliability

Data needs be consistent

Synchronizing concurrent access
Detecting and recovering from failures
Deadlock management

Fundamental conflicts between requirements (see CAP theorem)
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Why transactions?

Transactions form a reasonable abstraction concept for many classes
of real-life data processing problems.

Transactions cope in a very elegant way with the subtle and often difficult
issues of keeping data consistent in the presence of highly concurrent data
accesses and despite all sorts of failures.

This is achieved in a generic way invisible to the application logic so that
application developers are freed from the burden of dealing with such
system issues.

The application program simply has to indicate the boundaries of a
transaction by issuing BEGIN TRANSACTION and COMMIT TRANSACTION calls.
The execution environment considers all requests receiving from the
application programs execution within this dynamic scope as belonging to
the same transaction.
For the transaction’s requests and effects on the underlying data certain
properties are guaranteed: ACID properties.
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Challenges inherent to the transaction concept demonstrated by some examples

(Expl.1a) Debit/credit

Consider a debit/credit-program of a bank which transfers a certain amount of money between
two accounts. Executing the program will give us the following transaction T:

BEGIN

% Withdraw

READ current value VA of account A from disk into T’s local main memory;

decrement VA by amount X;

WRITE new value VA’ = VA - X of account A from T’s local main memory onto disk;

% Deposit

READ current value VB of account B from disk into T’s local main memory;

increment VB by amount X;

WRITE new value VB’ = VB + X of account B from T’s local main memory onto disk;

COMMIT;

Assume when executing T the system runs into a failure, e.g. after writing A and before
reading B. A customer of the bank has lost X money!

Assume debit/credit-transaction T1 is running concurrently to a transaction T2, which
computes the balance of the accounts A and B. Then the READ and WRITE accesses of
both transactions may be interleaved. Assume that T2 is executed after T1 writing A and
before T1 writing B, then the balance computed will be incorrect.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



6. Introduction Page 7

(Expl.1b) Distributed debit/credit

Assume that different branches of the bank are involved, where each branch maintains its own
server. Assume further, at Branch1 a debit/credit-transaction is started and at Branch2 a
balancing transaction, where both involve the same accounts. Transactions shall have access
to accounts on remote server via remote procedure calls (RPC), a synchronous communication
mechanism transparent to the programmer. We assume procedures
withdraw(account, amount), deposit(account, amount) and getBalance(account).

A possible interleaving when both transactions are running in parallel.

Branch1(accountA) Branch2(accountB)

T1 : withdraw(A,10)
T1 : call(deposit(B,10))

T2 : getBalance(B)
T2 : call(getBalance(A))
T1 : deposit(B,10)

T2 : getBalance(A)
T2 : display A+B

↓ time

An incorrect balance will be displayed!
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(Expl.1c) Distributed debit/credit

Assume that different branches of the bank are involved, where each branch maintains it own
servers. Assume further, at Branch1 a debit/credit-transaction is started and at Branch2 a
balancing transaction is started, where both involve the same accounts. Finally assume, that
each transaction implements exclusive access to both accounts during execution.
Communication is explicitly implemented by exchanging messages between the involved
servers.

A possible interleaving when both transactions are running in parallel.

Branch1 Branch2

T1 : {{lock(A); withdraw(A,10)} ||
{send {lock(B); deposit(B,10)} to
Branch2}}

T2 : {{lock(B); getBalance(B)} ||
{send {lock(A); getBalance(A)} to
Branch1}}

T1 : {wait for ACK of deposit at
Branch2}

T2 : {wait until lock(A) granted}
T2 : {wait for balance of A}
T1 : {wait until lock(B) granted}

↓ time

A deadlock has occured which is difficult to detect!
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(Expl.2) Electronic commerce

Consider the following purchasing activity, which covers several different servers located at
different sites:

A client connects to a bookstore’s server and starts browsing and querying the catalog.

The client gradually fills a shopping card with items intended to purchase.

When the client is about to check out she makes final decisions what to purchase.

The client provides all necessary information for placing a legally binding order, e.g.
shipping address and credit card.

The merchants’s server forwards the payment information to the customer’s bank or to a
clearinghouse. When the payment is accepted, the inventory is updated, shipping is
initiated and the client is notified about successful completion of her order.

The final step of the purchasing is the most critical one. Several servers maintained by
different institutions are involved.

Most importantly it has to be guaranteed, that either all the tasks of the final step are
processed correctly, or the whole purchasing activity is undone.
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(Expl.3) Mobile computing

Assume that the described purchasing activity is performed via a smartphone. Then the
described picture is even more complicated.

The smartphone might be temporarily disconnected from the mobile net. Thus it is not
guaranteed, that the state of the catalog as seen by the client reflects the state of the
catalog at the server.

If the client enters a dead spot during processing of the final step of the purchasing
activity, confusion may arise, e.g. the purchasing is started again resulting in double
orders.
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Transaction Concept

ACID properties

A tomicity: A transaction is executed completely or not at all.

C onsistency: Consistency constraints defined on the data are preserved.

I solation: Each transaction behaves as if it were operating alone on the data.

D urability: All effects will survive all software and hardware failures.

=⇒ Concurrency Control (I) and Recovery (A, D) provide the mechanisms
needed to cope with the problems demonstrated by Expl.1-3.
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Concurrency Control Refresh

Basics

Set of transactions T = {T1, . . . ,Tn}.

A transaction is given as a sequence of read (R) - and write (W)-actions over
database objects {A,B,C , . . .}, e.g.

T1 = R1A W1A R1B W1B
T2 = R2A W2A R2B W2B
T3 = R3A W3B

Let WX be the j-th action of transaction T and assume that RA1, . . . , RAn are
the read actions of T being processed in the indicated order before WX . Then
the value of X written by T is given by fT ,j(a1, . . . , an), where fT ,j is an arbitrary,
however unknown function and the a’s are the values read in the indicated order
by the preceding read actions.

A concurrent execution of a set of transactions is called schedule and is given as
a - possibly interleaved - sequence of the respective actions, e.g.

S1 = R1A W1A R3A R1B W1B R2A W2A W3B R2B W2B
S2 = R1A W1A R3A R1B W1B R2A W2A W3B R2B W2B
S3 = R3A R1A W1A R1B W1B R2A W2A R2B W2B W3B

A schedule is called serial, if it is not interleaved.
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Correctness

A schedule is called (conflict-)serializable,1 if there exists a (conflict-)equivalent
serial schedule over the same set of transactions.

For a given schedule S over a set of transactions, the conflict graph G(S) is given
as G(S) = (V ,E), where the node set V is the set of transactions in S and the
set of edges E is given by so called conflicts as follows:

S = . . .WiA . . .RjA . . . ⇒ Ti → Tj ∈ E , if there is no other write-action
to A between WiA und RjA in S .
S = . . .WiA . . .WjA . . . ⇒ Ti → Tj ∈ E , if there is no other write-action
to A between WiA und WjA in S .

Ŝ = . . .RiA . . .WjA . . . ⇒ Ti → Tj ∈ E , if there is no other write-action
to A between RiA und WjA in S .

A schedule is serializable, iff its conflict graph is acyclic.

1We consider only conflict-serializability and therefore talk about serializability in the
sequel, for short.
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Example

Schedule S1: R1A W1A R3A R1B W1B R2A W2A W3B R2B W2B
Schedule S2: R3A R1A W1A R1B W1B R2A W2A R2B W2B W3B

S1 is serializable, S2 is not.

To exclude not serializable schedules, a so called transaction manager enforces certain
transaction behaviour.
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2-Phase Locking (2PL)

Serializable schedules are guaranteed, if all transactions obey the 2PL-protocol:

For each transaction T , each RA and WA has to be surrounded by a lock/unlock
pair LA,UA:

T = . . .R/WA . . . =⇒ T = . . . LA . . .R/WA . . .UA . . .

For each A read or written in T there exists at most one pair LA and UA.
For each T and any LA1,UA2 there holds: T = . . . LA1 . . .UA2 . . ..

=⇒ No more locking after the first unlock!
In any schedule S , the same object A cannot be locked at the same time by more
than one transaction:

S = . . . LiA . . . LjA . . . =⇒ S = . . . LiA . . .UiA . . . LjA . . .

Every schedule according to 2PL is serializable, however

Not every serializable schedule can be produced by 2PL.
Deadlocks may occur.
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Example 1

T1 = L1A R1A L1B U1A W1B U1B,
T2 = L2A R2A W2A U2A,
T3 = L3C R3C U3C .

S = L1A R1A L1B U1A L2A R2A L3C R3C U3C W1B U1B W2A U2A

Example 2

T1 = L1A R1A L1B U1A W1B U1B,
T2 = L2A R2A W2A U2A,
T3 = L3C R3C U3C .

S = L1A R1A L1B U1A L2A R2A L3C R3C U3C W1B U1B W2A U2A

The lock point of a transaction using 2PL is given by the first unlock of the
transaction.
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2PL guarantees serializability of schedules.

Let S be a schedule of a set of 2PL-transactions T = {T1, . . . ,Tn}.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.o.g.
T1 → T2 → · · · → Tk → T1.

Each edge T → T ′ implies T and T ′ having conflicting actions, where the action of T
preceds the one of T ′.

Because of surrounding actions by lock/unlock and the 2PL-rule, T ′ can execute its
action only after the lock-point of T . This implies the following structure of S , where
A1, . . . ,Ak are data items:

S = . . .U1A1 . . . L2A1 . . . ,
...
S = . . .Uk−1Ak−1 . . . LkAk−1 . . . ,
S = . . .UkAk . . . L1Ak . . . .

Let l1, . . . , lk be the lock points of the involved transactions. Then we have l1 before l2,
. . . , lk−1 before lk and lk before l1. However this is a contradiction to the structure of a
schedule. Therefore S is serializable.
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Recovery Refresh

Failure Recovery

We want to deal with three types of failures:

transaction failure (also: process failure): A transaction voluntarily or
involuntarily aborts. All of its updates need to beundone

system failure: Database or operating system crash, power outage, etc. All
information in main memory is lost. Must make sure that no committed
transaction is lost (or redo their effects) and that all other transactions are
undone.

media failure (also: device failure): Hard disk crash, catastrophic error (fire,
water, ...). Must recover database from stable storage

In spite of all these failures, we we want to guarantee atomicity and durability.
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Example: System Failure

Transactions T1, T2, and T5 were committed before the crash.

Durability: Ensure that updates are preserved (or redone).

Transactions T3 and T4 were not (yet) committed.

Atomicity: All of their effects need to be undone.
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Types of Storage

We assume three different types of storage:

volatile storage: This is essentially the buffer manager in main memory. We are
going to use volatile storage to cache the ”write-ahead log” in a moment.

non-volatile storage: Typical candidate is a hard disk or SSD

stable storage: Non-volatile storage that survives all types of failures which is
hard to achieve in practice. Stability can be improved using, e.g., (network)
replication of disk data. Backup tapes are another example.

Observe how these storage types correspond to the three types of failures.

Interaction between volatile and non-volatile storage

Coordination policies between transactions and storage on non-volatile memory

Can modified pages written to disk even if there is no commit (Steal)?

Can we delay writing modified pages after commit (No-Force)?

Steal+No-Force

improve throughput and latency,

but make recovery more complicated

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



6. Introduction Page 25

Types of Storage

We assume three different types of storage:

volatile storage: This is essentially the buffer manager in main memory. We are
going to use volatile storage to cache the ”write-ahead log” in a moment.

non-volatile storage: Typical candidate is a hard disk or SSD

stable storage: Non-volatile storage that survives all types of failures which is
hard to achieve in practice. Stability can be improved using, e.g., (network)
replication of disk data. Backup tapes are another example.

Observe how these storage types correspond to the three types of failures.

Interaction between volatile and non-volatile storage

Coordination policies between transactions and storage on non-volatile memory

Can modified pages written to disk even if there is no commit (Steal)?

Can we delay writing modified pages after commit (No-Force)?

Steal+No-Force

improve throughput and latency,

but make recovery more complicated

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



6. Introduction Page 26

Effects of TA/storage coordination on recovery

The decisions force/no force and steal/no steal have implications on what we
have to do during recovery:

If we want to use steal and no force (to increase concurrency and performance),
we have to implement redo and undo routines.
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ARIES Algorithm

Algorithm for Recovery and Isolation Exploiting Semantics

A better alternative to shadow paging which switches between
active/committed page

Works with steal and no-force

Data pages are updated in place

Uses ”logging”

Log: An ordered list of REDO/UNDO actions.
Record REDO and UNDO information for every update.
Sequential writes to log (usually kept on separate disk(s)).
Minimal info written to log  multiple updates fit in a single log page.
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Three main principles of ARIES

1 Write-Ahead Logging

Record database changes in the log at stable storage before the actual
change.

2 Repeating History During Redo

After a crash, bring the system back to the exact state at crash time; undo
the transactions that were still active at crash time.

3 Logging Changes During Undo

Log the database changes during a transaction undo so that they are not
repeated in case of repeated failures and restarts (i.e., never undo an undo
action).
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Write-Ahead Log (WAL)

The ARIES recovery method uses a ”write-ahead log” to implement the
necessary redundancy.

Mohan et al., ”ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
LoggingW, ACM TODS, 17(1), 1992.

WAL: Any change to a database object is first recorded in the log, which
must be written to stable storage before the change itself is written to
disk.

To ensure atomicity and prepare for undo, undo information must be written
to stable storage before a page update is written back to disk.
To ensure durability, redo information must be written to stable storage at
commit time (no-force policy: the on-disk data page may still contain old
information).
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Log Information

The log consists of entries in the followowing forrm:

< LSN,Type,TOD,PrevLSN,PageID,NextLSN,Redo,Undo >

LSN: Log Sequence Number: Monotonically increasing number to identify
each log record.

Type (Record Type): Begin, Commit, Abort, Update, Compensation

TID: Transaction Identifier

PrevLSN: Previous LSN of the same transaction

PageID: Page which was modified

NextLSN: Next LSN of the same transaction

Redo Information described by this log entry

Undo Information described by this log entry
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Example of transactions and logs
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Redo Information

ARIES assumes page-oriented redo

stores byte images of the pages

before and after the modification

Restore exact same pages as execution without failures

Undo Information

ARIES assumes logical undo

Record the actual tuple changes, e.g. account A increased by 50

Faster undo
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Writing Log Records

For performance reasons, all log records are first written to volatile storage.

At certain times, the log is forced to stable storage up to a certain LSN:

Commit of a transaction for Redo
Page writing of uncommitted for Undo

Committed transaction = all log records (including commit) are on stable
storage

Normal Processing

During normal transaction processing, keep two pieces of information in
each transaction control block:

LastLSN: LSN of the last log record written for this transaction.
NextLSN: LSN of the next log record to be processed during rollback.

Whenever an update to a page p is performed

a log record r is written to the WAL, and
the LSN of r is recorded in the page header of p.
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ARIES Transaction Rollback

To roll back a transaction T after a transaction failure (e.g. ABORT):

Process the log in a backward fashion.
Start the undo operation at the log entry pointed to by the UNxt field in the
transaction control block of T.
Find the remaining log entries for T by following the Prev and UNxt fields in
the log.
Perform the changes in the Undo part of the log entry

Undo operations modify pages, too!

Log all undo operations to the WAL.
Use compensation log records (CLRs) for this purpose.
Note: We never undo an undo action, but we might need to redo an undo
action.
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ARIES Crash Recovery

Restart after a system failure is performed in three phases

1 Analysis Phase:

Read log in forward direction.
Determine all transactions that were active when the failure happened. Such
transactions are called ”losers”.

2 Redo Phase:

Replay the log (in forward direction) to bring the system into the state as of
the time of system failure.
Put ”after images” in place of before images
Also restores the losers

3 Undo Phase

Roll back all loser transactions, reading the log in a backward fashion
(similar to ”normal” rollback).
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Media Recovery

To allow for recovery from non-volatile media failure, periodically back up
data to stable storage.

Can be done during normal processing, if WAL is archived, too.

Other approach: Use log to mirror database on a remote host (send log to
network and to stable storage).

Checkpointing

WAL file keeps growing unbounded

For recovery, we need to visit entire WAL file

Generate checkpoints with current transaction state

Recovery only from checkpoint
Bound WAL file and allow truncation
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