
7. Distributed System Architectures 7.1. Client-Server Page 1

7: Distributed System Architectures
7.1: Client-Server1

One/two/three-tier Architectures

one-tier two-tier (thin/thick client) three-tier

1Literature: G. Alonso et al., Web services: Concepts, Architectures and Applications.
Springer Verlag 2004.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift



7. Distributed System Architectures 7.1. Client-Server Page 2

from one-tier to two-tier architecture

The evolution to 2-tier systems was pushed by the appearence of the PC; now the
presentation layer could be physically separated from the application layer.

The presentation layer no longer takes resources needed by the application layer;
it can be tailored for different purposes independently of each other.

Complexity of the clients range from easily to maintain thin clients, offering only
minimal functionality, to thick clients, offering rich functionality.

three-tier architecture

How can a client communicate with a server of a different client/server system?

3-tiers architectures are mainly intended as integration platforms, where the new
additional tier separating clients and servers in the 2-tier setting is also called
middleware.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



7. Distributed System Architectures 7.1. Client-Server Page 3

three-tier integration architecture: the middleware is the integration engine.

Federated system architecture

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



7. Distributed System Architectures 7.2. Multiprocessor Architectures Page 4

7.2: Multiprocessor Architectures

A parallel computer, or multiprocessor, is a special kind of distributed system made of
a number of nodes (processors, memories, disks) connected by a very fast network
within one or more cabinets in the same room.

High-performance by parallel data management, query optimization (inter-query
parallelism to increase throughput and intra-query parallelism to decrease
response time), load balancing.

High-availability by increased data availability through replication and
fault-tolerance through replication of components.

Extensibility by adding processing and storage power to the system with minimal
reorganization. Ideal behaviour:

Linear speedup: Linear increase in performance for a constant database size
while the number of nodes (processing and storage power) are increased
linearly.
Linear scaleup: Sustained performace for a linear increase in both database
size and number of nodes.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



7. Distributed System Architectures 7.2. Multiprocessor Architectures Page 5

Shared Memory

Any processor has access to any memory module or disk unit through a fast
interconnect. All processors are under the control of a single operating system.

Simplicity: Meta-information (directories) and control information (e.g. lock tables) can
be shared by all processors.

Load balancing: Easy to be achieved at run-time using the shared-memory by allocating
each new task to the least busy processor.

High cost: Complex hardware required for the interlinking of processors and memory
modules or disks.

Limited extensibility: With faster processors (even with larger caches), conflicting access
to shared-memory increases and degrades performance.

Low availability: A memory fault may affect many processors. Duplex memory with
redundant interconnect could be a solution.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



7. Distributed System Architectures 7.2. Multiprocessor Architectures Page 6

Shared-Disk

Any processor has access to any disk unit through the interconnect but exclusive access
to its main memory. Each processor can access database pages on the shared disks and
cache them into its own memory.

Low cost: Standard bus technology can be used for the interconnect.

High extensibility, load balancing: Easy to add new disks.

Availability: Memory faults are isolated from other nodes.

Easy migration: No reorganization on disks necessary.

High complexity: Distributed database system protocols are required.

Cache consistency: Incurs high communication overhead.

Performance: Access to shared disks is a potential bottleneck.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



7. Distributed System Architectures 7.2. Multiprocessor Architectures Page 7

Shared-Nothing

Each processor has exclusive access to its main memory and disks. Each node can be
viewed as a local site in a distributed database. Using a fast interconnect it is possible to
accomodate large numbers of nodes.

Low cost: No special interconnect required.

High extensibility: Easy to add new disks. Linear scaleup and linear speedup possible to
achieve.

High availability: Replicating data on multiple nodes.

High complexity: Distributed database system protocols are required for a large number
of nodes.

Load balancing: Depends on data location and not actual load of the system.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



7. Distributed System Architectures 7.2. Multiprocessor Architectures Page 8

Multicore Architecture

Consider a blade with 2 TB main memory and up to 64 cores. With 25 of such blades the
enterprise data of the largest companies in the world can be hold and processed.

Shared-nothing architecture among blades and shared-memory inside a blade.

Cache coherency becomes critical.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



7. Distributed System Architectures 7.3. Mobility Architectures Page 9

7.3: Mobility Architectures

Mobile devices with their local database may be temporarily disconnected.

Stationary databases may be disconnected, respectively may be continuously updated.

Consistent global states cannot be guaranteed, in general - undo of local operations may
become necessary.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer


	Distributed System Architectures
	Client-Server
	Multiprocessor Architectures
	Mobility Architectures




