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General reference architecture.
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8.1: Preliminaries

Sites and subtransactions

Let be given a fixed number of sites across which the data is distributed. The
server at site i , 1 ≤ i ≤ n is responsible for a (finite) set Di of data items. The
corresponding global database is given as D = ∪n

i=1Di .

Data items are not replicated; thus Di ∩ Dj = ∅, i 6= j .

Let T = {T1, . . . ,Tm} be a set of transactions, where Ti = (OPi , <i ), 1 ≤ i ≤ m.

Transaction Ti is called global, if its actions are running at more than one server;
otherwise it is called local.

The part of a transaction Ti being executed at a certain site j is called
subtransaction and is denoted by Tij .
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Parallelism as prerequisite for distributed execution

A transaction T is a partial order <1 of actions in OP, T = (OP, <), where OP is a
finite set of T ’s actions RX and WX , where X is a data item.

Moreover, < ⊆ OP × OP is a partial order on OP which fulfills the following
properties:

Each data item is read and written by T at most once.

If p is a read action and q is a write actions of T and both access the same data item,
then p < q.

Complete transaction

We call a transaction complete, if its first action is begin b and its last action either is
commit c or abort a.

1A binary relation is a partial order , if it is reflexive, antisymmetric and transitive.
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Histories and schedules

Let T = {T1, . . . ,Tn} be a (finite) set of complete transactions, where for each Ti we
have Ti = (OPi , <i ).

A history of T is a pair S = (OPS , <S), where

OPS = ∪n
i=1OPi and <S a partial order on OPS such that <S⊇ ∪n

i=1 <i .

Let p, q ∈ OPS , where p and q belong to distinct transactions, however access
the same data object. If p or q is a write action, then either p <S q or q <S p;
we say, p and q are in conflict; if p <S q and p and q are in conflict, we write
(p, q) ∈ conf (S).

A schedule of T is a prefix of a history.2

Conflict graph

The conflict graph of a schedule S is given as G(S) = (V ,E), where V is the set of
transactions in S and the set of edges E is given by the conflicts in S : Ti → Tj ∈ E , iff
there are conflicting actions p ∈ OPi , q ∈ OPj and p <S q.

2A partial order L′ = (A′, <′) is a prefix of a partial order L = (A, <), if A′ ⊆ A, <′⊆<,
for all a, b ∈ A′: a <′ b if a < b, and for all p ∈ A, q ∈ A′: p < q ⇒ p <′ q.
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A parallel debit/credit transaction. b: BEGIN; c: COMMIT.

When transactions are depicted as directed graphs, we omit transitive edges.

Two parallel debit/credit transactions, each prepared for parallel execution.

=⇒ Definition of a schedule? Definition of serializability?
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Two parallel debit/credit transactions, each prepared for parallel execution.

Transaction T1 Transaction T2

Locally observable schedules of the two transactions when executed in parallel by CPU PA and
CPU PB.

(i)
PA : R1A W1A R2A W2A
PB : R1B W1B R2B W2B

(ii)
PA : R1A W1A R2A W2A
PB : R2B W2B R1B W1B

On each CPU in both cases the local schedules are serializable - however, globally, in the
second case the transactions are not executed in a serializable manner!
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A schedule/history of the two parallel debit/credit transactions.

The schedule is not serializable
as its conflict graph is cyclic.

Serializability

A schedule S = (OPS , <S ) is serial, if for any two transactions T1,T2 appearing in S ,
<S orders all actions of T1 before all actions of T2, or vice versa.

A schedule is called (conflict-)serializable,3 if there exists a (conflict-)equivalent serial
schedule over the same set of transactions.

A schedule S = (OPS , <S ) is serializable, iff its conflict graph is acyclic.

3We consider only conflict-serializability and therefore talk about serializability in the
sequel, for short.
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Local and global schedules

We are interested in deciding whether or not the execution of a set of transactions is
serializable, or not.

At the local sites we can observe an evolving sequence of the respective
transactions’ actions.

We would like to decide whether or not all these locally observable sequences
imply a (globally) serializable schedule.

However, on the global level we cannot observe an evolving sequence, as there
does not exist a notion of global physical time.
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Example

Schedule:

Observed local schedules:
Site 1 (PA) : R1A W1A R2A W2A
Site 2 (PB) : R2B W2B R1B W1B

Can schedules be represented as action sequences, as well?

... yes, we call them global schedules.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



8. Distributed Concurrency Control 8.1. Preliminaries Page 10

From now on local and global schedules are sequences of actions!

Let T = {T1, . . . ,Tm} be a set of transactions being executed at n sites. Let
S1, . . . , Sn be the corresponding local schedules.

A global schedule of T with respect to S1, . . . , Sn is any sequence S of the actions of
the transactions in T , such that its projection onto the local sites equals the
corresponding local schedules S1, . . . , Sn.

Example

Consider local schedules S1 = R1A W2A and S2 = W1B R2B.

Global schedules:
S : R1A W1B W2A R2B
S ′ : R1A W1B R2B W2A

Not a global schedule: S ′′ : R1A R2B W1B W2A
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Examples where there does not exist a serializable global schedule

T1 = R1A W1B, T2 = R2C W2A are global transactions and T3 = R3B W3C is a local
transaction.

S1 : R1A W2A
S2 : R3B W1B R2C W3C

Note, in S2 subtransactions T12 and T22 have no confliciting actions!

T1 = RA RD und T2 = RB RC are global transactions, while T3 = RA RB WA WB and
T4 = RD WD RC WC are local transactions.

S1 : R1A R3A R3B W3A W3B R2B
S2 : R4D W4D R1D R2C R4C W4C

Note, both global transactions are only reading and, in particular, disjoint data sets!

In both examples the local schedules are serializable, however no serializable global schedule
exists.
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Serializability of global schedules

As we do not have replication of data items, whenever there is a conflict in a
global schedule, the same conflict must be part of exactly one local schedule.

Consequently, the conflict graph of a global schedule is given as the union of the
conflict graphs of the respective local schedules.

In particular, given a set of local schedules, either all or none corresponding global
schedule is serializable.
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Examples

S1 : R1A W1A R2A W2A
S2 : R2B W2B R1B W1B

S1 : R1A W2A
S2 : R3B W1B R2C W3C

S1 : R1A R3A R3B W3A W3B R2B
S2 : R4D W4D R1D R2C R4C W4C
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Types of federation

homogeneous federation:

Same services and protocols at all servers. Characterized by distribution
transparency: the federation is perceived by the outside world as if it were not
distributed at all.

heterogenous federation:

Servers are autonomous and independent of each other; no uniformity of services
and protocols across the federation.

Interface to recovery

Every global transactions runs the 2-phase-commit protocol. By that protocol the
subtransactions of a global transaction synchronize such that either all subtransactions
commit, or none of them, i.e. all abort. Details are given in Chapter 10.
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8.2: Homogeneous Concurrency Control

Serializability by distributed 2-Phase Locking (2PL)

A transactions entry into the unlock-phase has to be synchronized among all sites the
transaction is being executed.

Primary Site 2PL:

One site is selected at which lock maintenance is performed exclusively.

This site thus has global knowledge and enforcing the 2PL rule for global and local
transactions is possible.

The lock manager simply has to refuse any further locking of a subtransaction Tij

whenever a subtransaction Tik has started unlocking already.

Much communication is resulting which may create a bottleneck at the primary site.

Example

S1 : R1A W1A R2A W2A

S2 : R2B W2B R1B W1B
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Distributed 2PL:

When a server wants to start unlocking data items on behalf of a transaction, it
communicates with all other servers regarding the lock point of the other respective
subtransaction.

The server has to receive a locking completed-message from each of these servers.

This implies extra communication between servers.

Example

S1 : R1A W1A R2A W2A

S2 : R2B W2B R1B W1B
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Distributed Strong 2PL:

Every subtransaction of a global transaction and every local transaction holds locks until
commit.

Then by the 2-phase-commit protocol the 2PL-rule is enforced as a side-effect.

Applying strong 2PL the global 2PL-property is self-guaranteed without any explicit
measures!
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Locking protocols are prone to deadlocks!

Global deadlock
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Global deadlock detection is difficult. Detection strategies:

Centralized detection: Each site maintains its local wait-for graph. One distinguished site
is selected to which all local wait-for graphs are send periodically. The selected site
computes the union of all local wait-for graphs and checks for deadlocks.

Time-out based detection: Whenever during a wait a time-out occurs, the respective
transaction decides for a deadlock and aborts itself.

Edge chasing: Whenever a transaction T waits for a transaction T ′, it sends its
identification to T ′. Whenever a transaction T ′ receives such a message, it sends the
identification of such T to all transctions it is waiting for. If a transaction recieves its
own identification, it decides for a deadlock and it aborts itself.

Path pushing:

(i) Each server that has a waits-for path from transaction ti to transaction tj such that
Ti has an incoming waits-for-message edge and Tj has an outgoing waits-for-message
edge sends that path to the server along the outgoing edge.

(ii) Upon receiving a path the server concatenats this with the local paths that already
exist, and forwards the result along its outgoing edges again. If there exists a cycle
among k servers, at least one of them will detect the cycle in at most k rounds.
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Serializabilty by assigning timestamps to transactions

Global and local transactions are timestamped; all subtransactions of a
transaction obtain the same timestamp.

Timestamps must be system-wide unique and based on synchronized clocks.

To be system-wide unique, timestamps are values of local clocks concatenated
with the site ID.

Time Stamp Protocol TS

To each transaction T it is assigned a unique timestamp Z(T ) when it is started.

A transaction T must not write an object which has been read by any T ′ where
Z(T ′) > Z(T ).

A transaction T must not write an object which has been written by any T ′

where Z(T ′) > Z(T ).

A transaction T must not read an object which has been written by any T ′

where Z(T ′) > Z(T ).
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The TS-protocol guarantees serializability of schedules.

Let S be a global schedule of a set of transactions T = {T1, . . . ,Tn}, which all apply TS.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.o.g.
T1 → T2 → · · · → Tk → T1.

Each edge T → T ′ implies T and T ′ have conflicting actions, where the action of T
preceds the one of T ′.

Because of TS we know Z(T ) < Z(T ′). This implies the following:

Z(T1) < Z(T2) < . . . < Z(Tn) < Z(T1),

a contradiction. Therefore S is serializable.
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8.3: Heterogeneous Concurrency Control

Local and global transaction managers

Each server runs its own local transaction manager which guarantees local
serializability, i.e. the serializable execution of its local transactions and
subtransactions.

To guarantee global serializability a global transaction manager controls the
execution of the global transactions. This could either be based on ordering the
commit of the transaction, or by introducing artificial data objects called tickets
which have to be accessed by the subtransactions.
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Global serializability through local guarantees: rigorous local schedules

Rigorous schedules

A local schedule S = (OPS , <S) of a set of complete transactions is rigorous if for all
involved transactions (local and subtransactions) Ti ,Tj there holds:

Let pj ∈ OPj , qi ∈ OPi , i 6= j such that (pj , qi ) ∈ conf (S). Then either aj <S qi

or cj <S qi .

Commit-deferred transaction

A global transaction T is commit-deferred if its commit action is sent by the global
transaction manager to the local sites of T only after the local executions of all
subtransactions of T at that sites have been acknowledged.

Commit-deferment is achieved as a side-effect of the 2-phase-commit protocol.
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Examples

Consider two servers where D1 = {A,B} and D2 = {C ,D}. We have the following
transactions:

global : T1 = WA WD
T2 = WC WB

local : T3 = RA RB
T4 = RC RD

We have the following local schedules:

S1 : W1A c1 R3A R3B c3 W2B c2

S2 : W2C c2 R4C R4D c4 W1D c1

Even though the local schedules are serializable, the two global transactions are not
executed in a serializable manner. The local schedules are rigorous, however not
commit-deferred.
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Lemma

A schedule is serializable, whenever it is rigorous.

Sketch of proof: Assume the contrary. Then there exists a history which has a cyclic
conflict graph, though rigorousness holds. As a commit is the final action of a
transaction, rigorousness makes such a cycle impossible.

Theorem

Let S be a global history for local histories S1, . . . , Sn. If Si rigorous, 1 ≤ i ≤ n and all
global transactions are commit-deferred, then S is globally serializable.

Sketch of proof: Assume the contrary. Then there exists a history which has a cyclic
conflict graph, though rigorousness and commit-deferment hold. As rigorousness
guarantees local serializability, such a cycle must involve at least two sites. As a commit
is the final action of a transaction, commit-deferment makes such a cycle impossible.

Because of the 2-phase-commit protocol, under rigorousness global serializability
practically comes for free!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



8. Distributed Concurrency Control 8.3. Heterogenous Concurrency Control Page 31

Global serializability through explicit measures: tickets

Ticket-based concurrency control

Each server guarantees serializable local schedules in a way unknown for the
global transactions.

Each server maintains a special counter as database object, which is called ticket.
Each subtransaction of a global transaction being executed at that server
increments (reads and writes) the ticket (take-a-ticket-Operation). Doing so we
introduce explicit conflicts between global transactions running at the same
server.

The global transaction manager guarantees that the order in which the tickets are
accessed by the subtransactions will imply a linear order on the global
transactions.
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Applying ticketing by examples

By Ij we denote the ticket at server j .

Let T1 = R1A R1D and T2 = R2B R2C be global transactions and let
T3 = R3A R3B W3A W3B and T4 = R4D W4D R4C W4C be local transactions.

S1 : R1(I1) W1(I1) R1A R3A R3B W3A W3B R2(I1) W2(I1) R2B
S2 : R4D W4D R1(I2) W1(I2) R1D R2(I2) W2(I2) R2C R4C W4C

Not serializable - could be detected at server 2.

Let T1 = R1A W1B and T2 = R2B W2A be global transactions.

S1 : R1(I1) W1(I1) R1A R2(I1) W2(I1) W2A
S2 : R2(I2) W2(I2) R2B R1(I2) W1(I2) W1B

Not serializable, could not be detected neither at server 1 nor at server 2, however the
order of take-a-ticket operations does not imply a linear order on the global transactions.
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Applying ticketing by examples

By Ij we denote the ticket at server j .

Let T1 = R1A R1D and T2 = R2B R2C be global transactions and let
T3 = R3A R3B W3A W3B and T4 = R4D W4D R4C W4C be local transactions.

S1 : R1(I1) W1(I1) R1A R3A R3B W3A W3B R2(I1) W2(I1) R2B
S2 : R4D W4D R1(I2) W1(I2) R1D R2(I2) W2(I2) R2C R4C W4C

Not serializable - could be detected at server 2.

Let T1 = R1A W1B and T2 = R2B W2A be global transactions.

S1 : R1(I1) W1(I1) R1A R2(I1) W2(I1) W2A
S2 : R2(I2) W2(I2) R2B R1(I2) W1(I2) W1B

Not serializable, could not be detected neither at server 1 nor at server 2, however the
order of take-a-ticket operations does not imply a linear order on the global transactions.
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