8. Distributed Concurrency Control

General reference architecture.

Federated system
8.1: Preliminaries

Sites and subtransactions

- Let be given a fixed number of sites across which the data is distributed. The server at site i, $1 \leq i \leq n$ is responsible for a (finite) set D_i of data items. The corresponding global database is given as $D = \bigcup_{i=1}^{n} D_i$.

- Data items are not replicated; thus $D_i \cap D_j = \emptyset$, $i \neq j$.

- Let $T = \{T_1, \ldots, T_m\}$ be a set of transactions, where $T_i = (OP_i, <_i)$, $1 \leq i \leq m$.

- Transaction T_i is called global, if its actions are running at more than one server; otherwise it is called local.

- The part of a transaction T_i being executed at a certain site j is called subtransaction and is denoted by T_{ij}.
Parallelism as prerequisite for distributed execution

A transaction T is a partial order $<^1$ of actions in OP, $T = (OP, <)$, where OP is a finite set of T's actions RX and WX, where X is a data item.

Moreover, $< \subseteq OP \times OP$ is a partial order on OP which fulfills the following properties:

- Each data item is read and written by T at most once.
- If p is a read action and q is a write actions of T and both access the same data item, then $p < q$.

Complete transaction

We call a transaction *complete*, if its first action is begin b and its last action either is commit c or abort a.

1A binary relation is a partial order , if it is reflexive, antisymmetric and transitive.
Histories and schedules

Let \(T = \{ T_1, \ldots, T_n \} \) be a (finite) set of complete transactions, where for each \(T_i \) we have \(T_i = (OP_i, <_i) \).

A history of \(T \) is a pair \(S = (OP_S, <_S) \), where

- \(OP_S = \bigcup_{i=1}^{n} OP_i \) and \(<_S \) a partial order on \(OP_S \) such that \(<_S \supseteq \bigcup_{i=1}^{n} <_i \).
- Let \(p, q \in OP_S \), where \(p \) and \(q \) belong to distinct transactions, however access the same data object. If \(p \) or \(q \) is a write action, then either \(p <_S q \) or \(q <_S p \); we say, \(p \) and \(q \) are in conflict; if \(p <_S q \) and \(p \) and \(q \) are in conflict, we write \((p, q) \in \text{conf}(S) \).

A schedule of \(T \) is a prefix of a history.\(^2\)

Conflict graph

The conflict graph of a schedule \(S \) is given as \(G(S) = (V, E) \), where \(V \) is the set of transactions in \(S \) and the set of edges \(E \) is given by the conflicts in \(S \): \(T_i \rightarrow T_j \in E \), iff there are conflicting actions \(p \in OP_i, q \in OP_j \) and \(p <_S q \).

\(^2\)A partial order \(L' = (A', <') \) is a prefix of a partial order \(L = (A, <) \), if \(A' \subseteq A \), \(<' \subseteq < \), for all \(a, b \in A' \): \(a <' b \) if \(a < b \), and for all \(p \in A, q \in A' \): \(p < q \Rightarrow p <' q \).
A parallel debit/credit transaction. \(b: \text{BEGIN}; \ c: \text{COMMIT} \).

When transactions are depicted as directed graphs, we omit transitive edges.

Two parallel debit/credit transactions, each prepared for parallel execution.

\[\implies \text{Definition of a schedule? Definition of serializability?} \]
Two parallel debit/credit transactions, each prepared for parallel execution.

Locally observable schedules of the two transactions when executed in parallel by CPU PA and CPU PB.

(i) \(PA: R_1 A W_1 A R_2 A W_2 A \)
 \(PB: R_1 B W_1 B R_2 B W_2 B \)

(ii) \(PA: R_1 A W_1 A R_2 A W_2 A \)
 \(PB: R_2 B W_2 B R_1 B W_1 B \)

On each CPU in both cases the local schedules are serializable - however, globally, in the second case the transactions are not executed in a serializable manner!
A schedule/history of the two parallel debit/credit transactions.

The schedule is not serializable as its conflict graph is cyclic.

Serializability

- A schedule $S = (\text{OP}_S, <_S)$ is *serial*, if for any two transactions T_1, T_2 appearing in S, $<_S$ orders all actions of T_1 before all actions of T_2, or vice versa.
- A schedule is called (conflict-)serializable,\(^3\) if there exists a (conflict-)equivalent serial schedule over the same set of transactions.
- A schedule $S = (\text{OP}_S, <_S)$ is serializable, iff its conflict graph is acyclic.

\(^3\)We consider only conflict-serializability and therefore talk about serializability in the sequel, for short.
Local and global schedules

We are interested in deciding whether or not the execution of a set of transactions is serializable, or not.

- At the local sites we can observe an evolving sequence of the respective transactions’ actions.
- We would like to decide whether or not all these locally observable sequences imply a (globally) serializable schedule.
- However, on the global level we cannot observe an evolving sequence, as there does not exist a notion of global physical time.
Example

Schedule:

Observed local schedules:

Site 1 (PA): \(R_1A \ W_1A \ R_2A \ W_2A \)
Site 2 (PB): \(R_2B \ W_2B \ R_1B \ W_1B \)

Can schedules be represented as action sequences, as well?
... yes, we call them *global schedules.*
From now on local and global schedules are sequences of actions!

Let $\mathcal{T} = \{T_1, \ldots, T_m\}$ be a set of transactions being executed at n sites. Let S_1, \ldots, S_n be the corresponding local schedules.

A *global schedule* of \mathcal{T} with respect to S_1, \ldots, S_n is any sequence S of the actions of the transactions in \mathcal{T}, such that its projection onto the local sites equals the corresponding local schedules S_1, \ldots, S_n.

Example

Consider local schedules $S_1 = R_1 A W_2 A$ and $S_2 = W_1 B R_2 B$.

Global schedules:

$S : R_1 A W_1 B W_2 A R_2 B$

$S' : R_1 A W_1 B R_2 B W_2 A$

Not a global schedule: $S'' : R_1 A R_2 B W_1 B W_2 A$
Examples where there does not exist a serializable global schedule

- \(T_1 = R_1 A \ W_1 B, \ T_2 = R_2 C \ W_2 A \) are global transactions and \(T_3 = R_3 B \ W_3 C \) is a local transaction.

 \[S_1 : \quad R_1 A \quad W_2 A \]
 \[S_2 : \quad R_3 B \quad W_1 B \quad R_2 C \quad W_3 C \]

 Note, in \(S_2 \) subtransactions \(T_{12} \) and \(T_{22} \) have no conflicting actions!

- \(T_1 = RA \ RD \) und \(T_2 = RB \ RC \) are global transactions, while \(T_3 = RA \ RB \ WA \ WB \) and \(T_4 = RD \ WD \ RC \ WC \) are local transactions.

 \[S_1 : \quad R_1 A \quad R_3 A \quad R_3 B \quad W_3 A \quad W_3 B \quad R_2 B \]
 \[S_2 : \quad R_4 D \quad W_4 D \quad R_1 D \quad R_2 C \quad R_4 C \quad W_4 C \]

 Note, both global transactions are only reading and, in particular, disjoint data sets!

In both examples the local schedules are serializable, however no serializable global schedule exists.
Serializability of global schedules

- As we do not have replication of data items, whenever there is a conflict in a global schedule, the same conflict must be part of exactly one local schedule.

- Consequently, the conflict graph of a global schedule is given as the union of the conflict graphs of the respective local schedules.

- In particular, given a set of local schedules, either all or none corresponding global schedule is serializable.
Examples

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>$R_1 A$</td>
<td>$W_1 A$</td>
<td>$R_2 A$</td>
<td>$W_2 A$</td>
</tr>
<tr>
<td>S_2</td>
<td>$R_2 B$</td>
<td>$W_2 B$</td>
<td>$R_1 B$</td>
<td>$W_1 B$</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>$R_1 A$</td>
<td>$W_2 A$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td>$R_3 B$</td>
<td>$W_1 B$</td>
<td>$R_2 C$</td>
<td>$W_3 C$</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>$R_1 A$</td>
<td>$R_3 A$</td>
<td>$R_3 B$</td>
<td>$W_3 A$</td>
</tr>
<tr>
<td>S_2</td>
<td>$R_4 D$</td>
<td>$W_4 D$</td>
<td>$R_1 D$</td>
<td>$R_2 C$</td>
</tr>
</tbody>
</table>
Types of federation

- **homogeneous** federation:
 Same services and protocols at all servers. Characterized by *distribution transparency*: the federation is perceived by the outside world as if it were not distributed at all.

- **heterogenous** federation:
 Servers are autonomous and independent of each other; no uniformity of services and protocols across the federation.

Interface to recovery

Every global transactions runs the 2-phase-commit protocol. By that protocol the subtransactions of a global transaction synchronize such that either all subtransactions commit, or none of them, i.e. all abort. Details are given in Chapter 10.
8.2: Homogeneous Concurrency Control

Serializability by distributed 2-Phase Locking (2PL)

A transactions entry into the unlock-phase has to be synchronized among all sites the transaction is being executed.

Primary Site 2PL:
- One site is selected at which lock maintenance is performed exclusively.
- This site thus has global knowledge and enforcing the 2PL rule for global and local transactions is possible.
- The lock manager simply has to refuse any further locking of a subtransaction T_{ij} whenever a subtransaction T_{ik} has started unlocking already.
- Much communication is resulting which may create a bottleneck at the primary site.

Example

$S_1 : \quad R_1 A \quad W_1 A \quad R_2 A \quad W_2 A$

$S_2 : \quad R_2 B \quad W_2 B \quad R_1 B \quad W_1 B$
Distributed 2PL:

- When a server wants to start unlocking data items on behalf of a transaction, it communicates with all other servers regarding the lock point of the other respective subtransaction.
- The server has to receive a *locking completed*-message from each of these servers.
- This implies extra communication between servers.

Example

\[
S_1 : \begin{array}{cccc}
R_1 A & W_1 A & R_2 A & W_2 A
\end{array}
\]

\[
S_2 : \begin{array}{cccc}
R_2 B & W_2 B & R_1 B & W_1 B
\end{array}
\]
Distributed Strong 2PL:

- Every subtransaction of a global transaction and every local transaction holds locks until commit.
- Then by the 2-phase-commit protocol the 2PL-rule is enforced as a side-effect.

Applying strong 2PL the global 2PL-property is self-guaranteed without any explicit measures!
Locking protocols are prone to deadlocks!

Global deadlock
Global deadlock detection is difficult. Detection strategies:

- **Centralized detection**: Each site maintains its local wait-for graph. One distinguished site is selected to which all local wait-for graphs are send periodically. The selected site computes the union of all local wait-for graphs and checks for deadlocks.

- **Time-out based detection**: Whenever during a wait a time-out occurs, the respective transaction decides for a deadlock and aborts itself.

- **Edge chasing**: Whenever a transaction T waits for a transaction T', it sends its identification to T'. Whenever a transaction T' receives such a message, it sends the identification of such T to all transactions it is waiting for. If a transaction receives its own identification, it decides for a deadlock and it aborts itself.

- **Path pushing**:

 (i) Each server that has a waits-for path from transaction t_i to transaction t_j such that T_i has an incoming waits-for-message edge and T_j has an outgoing waits-for-message edge sends that path to the server along the outgoing edge.

 (ii) Upon receiving a path the server concatenates this with the local paths that already exist, and forwards the result along its outgoing edges again. If there exists a cycle among k servers, at least one of them will detect the cycle in at most k rounds.
Global deadlock detection is difficult. Detection strategies:

- **Centralized detection**: Each site maintains its local wait-for graph. One distinguished site is selected to which all local wait-for graphs are send periodically. The selected site computes the union of all local wait-for graphs and checks for deadlocks.

- **Time-out based detection**: Whenever during a wait a *time-out* occurs, the respective transaction decides for a deadlock and aborts itself.

- **Edge chasing**: Whenever a transaction T waits for a transaction T', it sends its identification to T'. Whenever a transaction T' receives such a message, it sends the identification of such T to all transactions it is waiting for. If a transaction receives its own identification, it decides for a deadlock and it aborts itself.

- **Path pushing**:
 1. Each server that has a waits-for path from transaction t_i to transaction t_j such that T_i has an incoming waits-for-message edge and T_j has an outgoing waits-for-message edge sends that path to the server along the outgoing edge.
 2. Upon receiving a path the server concatenates this with the local paths that already exist, and forwards the result along its outgoing edges again. If there exists a cycle among k servers, at least one of them will detect the cycle in at most k rounds.
Global deadlock detection is difficult. Detection strategies:

- **Centralized detection**: Each site maintains its local wait-for graph. One distinguished site is selected to which all local wait-for graphs are send periodically. The selected site computes the union of all local wait-for graphs and checks for deadlocks.

- **Time-out based detection**: Whenever during a wait a time-out occurs, the respective transaction decides for a deadlock and aborts itself.

- **Edge chasing**: Whenever a transaction T waits for a transaction T', it sends its identification to T'. Whenever a transaction T' receives such a message, it sends the identification of such T to all transactions it is waiting for. If a transaction receives its own identification, it decides for a deadlock and it aborts itself.

- **Path pushing**:

 (i) Each server that has a waits-for path from transaction t_i to transaction t_j such that T_i has an incoming waits-for-message edge and T_j has an outgoing waits-for-message edge sends that path to the server along the outgoing edge.

 (ii) Upon receiving a path the server concatenates this with the local paths that already exist, and forwards the result along its outgoing edges again. If there exists a cycle among k servers, at least one of them will detect the cycle in at most k rounds.
Global deadlock detection is difficult. Detection strategies:

- **Centralized detection**: Each site maintains its local wait-for graph. One distinguished site is selected to which all local wait-for graphs are send periodically. The selected site computes the union of all local wait-for graphs and checks for deadlocks.

- **Time-out based detection**: Whenever during a wait a time-out occurs, the respective transaction decides for a deadlock and aborts itself.

- **Edge chasing**: Whenever a transaction T waits for a transaction T', it sends its identification to T'. Whenever a transaction T' receives such a message, it sends the identification of such T to all transactions it is waiting for. If a transaction recieves its own identification, it decides for a deadlock and it aborts itself.

- **Path pushing**:

 (i) Each server that has a waits-for path from transaction t_i to transaction t_j such that T_i has an incoming waits-for-message edge and T_j has an outgoing waits-for-message edge sends that path to the server along the outgoing edge.

 (ii) Upon receiving a path the server concatenates this with the local paths that already exist, and forwards the result along its outgoing edges again. If there exists a cycle among k servers, at least one of them will detect the cycle in at most k rounds.
Serializability by assigning timestamps to transactions

- Global and local transactions are timestamped; all subtransactions of a transaction obtain the same timestamp.
- Timestamps must be system-wide unique and based on synchronized clocks.
- To be system-wide unique, timestamps are values of local clocks concatenated with the site ID.

Time Stamp Protocol TS

- To each transaction T it is assigned a unique timestamp $Z(T)$ when it is started.
- A transaction T must not write an object which has been read by any T' where $Z(T') > Z(T)$.
- A transaction T must not write an object which has been written by any T' where $Z(T') > Z(T)$.
- A transaction T must not read an object which has been written by any T' where $Z(T') > Z(T)$.
The TS-protocol guarantees serializability of schedules.

Let S be a global schedule of a set of transactions $T = \{T_1, \ldots, T_n\}$, which all apply TS.

Assume, S is not serializable, i.e. the conflict graph $G(S)$ is cyclic, where w.l.o.g. $T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_k \rightarrow T_1$.

- Each edge $T \rightarrow T'$ implies T and T' have conflicting actions, where the action of T preceds the one of T'.
- Because of TS we know $Z(T) < Z(T')$. This implies the following:

$$Z(T_1) < Z(T_2) < \ldots < Z(T_n) < Z(T_1),$$

a contradiction. Therefore S is serializable.
The TS-protocol guarantees serializability of schedules.

Let S be a global schedule of a set of transactions $T = \{T_1, \ldots, T_n\}$, which all apply TS.

Assume, S is not serializable, i.e. the conflict graph $G(S)$ is cyclic, where w.l.o.g. $T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_k \rightarrow T_1$.

- Each edge $T \rightarrow T'$ implies T and T' have conflicting actions, where the action of T preceds the one of T'.
- Because of TS we know $Z(T) < Z(T')$. This implies the following:

$$Z(T_1) < Z(T_2) < \ldots < Z(T_n) < Z(T_1),$$

a contradiction. Therefore S is serializable.
The TS-protocol guarantees serializability of schedules.

Let S be a global schedule of a set of transactions $T = \{T_1, \ldots, T_n\}$, which all apply TS.

Assume, S is not serializable, i.e. the conflict graph $G(S)$ is cyclic, where w.l.o.g. $T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_k \rightarrow T_1$.

- Each edge $T \rightarrow T'$ implies T and T' have conflicting actions, where the action of T preceds the one of T'.
- Because of TS we know $Z(T) < Z(T')$. This implies the following:

$$Z(T_1) < Z(T_2) < \ldots < Z(T_n) < Z(T_1),$$

a contradiction. Therefore S is serializable.
8.3: Heterogeneous Concurrency Control

Local and global transaction managers

- Each server runs its own *local* transaction manager which guarantees local serializability, i.e. the serializable execution of its local transactions and subtransactions.

- To guarantee global serializability a *global* transaction manager controls the execution of the global transactions. This could either be based on ordering the commit of the transaction, or by introducing artificial data objects called *tickets* which have to be accessed by the subtransactions.
Global serializability through local guarantees: rigorous local schedules

Rigorous schedules

A local schedule $S = (OP_S, <_S)$ of a set of complete transactions is rigorous if for all involved transactions (local and subtransactions) T_i, T_j there holds:

Let $p_j \in OP_j, q_i \in OP_i, i \neq j$ such that $(p_j, q_i) \in conf(S)$. Then either $a_j <_S q_i$ or $c_j <_S q_i$.

Commit-deferred transaction

A global transaction T is commit-deferred if its commit action is sent by the global transaction manager to the local sites of T only after the local executions of all subtransactions of T at those sites have been acknowledged.

Commit-deferment is achieved as a side-effect of the 2-phase-commit protocol.
Examples

Consider two servers where \(D_1 = \{A, B\} \) and \(D_2 = \{C, D\} \). We have the following transactions:

- global: \(T_1 = WA \ W D \)
- local: \(T_3 = RA \ R B \)
- \(T_2 = WC \ W B \)
- \(T_4 = RC \ R D \)

We have the following local schedules:

- \(S_1 : \) \(W_1 A \ c_1 \ R_3 A \ R_3 B \ c_3 \ W_2 B \ c_2 \)
- \(S_2 : \) \(W_2 C \ c_2 \ R_4 C \ R_4 D \ c_4 \ W_1 D \ c_1 \)

Even though the local schedules are serializable, the two global transactions are not executed in a serializable manner. The local schedules are rigorous, however not commit-deferred.
Lemma

A schedule is serializable, whenever it is rigorous.

Sketch of proof: Assume the contrary. Then there exists a history which has a cyclic conflict graph, though rigorousness holds. As a commit is the final action of a transaction, rigorousness makes such a cycle impossible.

Theorem

Let S be a global history for local histories S_1, \ldots, S_n. If S_i rigorous, $1 \leq i \leq n$ and all global transactions are commit-deferred, then S is globally serializable.

Sketch of proof: Assume the contrary. Then there exists a history which has a cyclic conflict graph, though rigorousness and commit-deferment hold. As rigorousness guarantees local serializability, such a cycle must involve at least two sites. As a commit is the final action of a transaction, commit-deferment makes such a cycle impossible.

Because of the 2-phase-commit protocol, under rigorousness global serializability practically comes for free!
Global serializability through explicit measures: tickets

Ticket-based concurrency control

- Each server guarantees serializable local schedules in a way unknown for the global transactions.
- Each server maintains a special counter as database object, which is called *ticket*. Each subtransaction of a global transaction being executed at that server increments (reads and writes) the ticket (*take-a-ticket*-Operation). Doing so we introduce explicit conflicts between global transactions running at the same server.
- The global transaction manager guarantees that the order in which the tickets are accessed by the subtransactions will imply a linear order on the global transactions.
Global serializability through explicit measures: tickets

Ticket-based concurrency control

- Each server guarantees serializable local schedules in a way unknown for the global transactions.
- Each server maintains a special counter as database object, which is called *ticket*. Each subtransaction of a global transaction being executed at that server increments (reads and writes) the ticket (*take-a-ticket*-Operation). Doing so we introduce explicit conflicts between global transactions running at the same server.
- The global transaction manager guarantees that the order in which the tickets are accessed by the subtransactions will imply a linear order on the global transactions.
Global serializability through explicit measures: tickets

Ticket-based concurrency control

- Each server guarantees serializable local schedules in a way unknown for the global transactions.

- Each server maintains a special counter as database object, which is called ticket. Each subtransaction of a global transaction being executed at that server increments (reads and writes) the ticket (take-a-ticket-Operation). Doing so we introduce explicit conflicts between global transactions running at the same server.

- The global transaction manager guarantees that the order in which the tickets are accessed by the subtransactions will imply a linear order on the global transactions.
Applying ticketing by examples

By l_j we denote the ticket at server j.

- Let $T_1 = R_1 A R_1 D$ and $T_2 = R_2 B R_2 C$ be global transactions and let $T_3 = R_3 A R_3 B W_3 A W_3 B$ and $T_4 = R_4 D W_4 D R_4 C W_4 C$ be local transactions.

 $S_1 : R_1 (l_1) W_1 (l_1) R_1 A R_3 A R_3 B W_3 A W_3 B R_2 (l_1) W_2 (l_1) R_2 B$
 $S_2 : R_4 D W_4 D R_1 (l_2) W_1 (l_2) R_1 D R_2 (l_2) W_2 (l_2) R_2 C R_4 C W_4 C$

Not serializable - could be detected at server 2.

- Let $T_1 = R_1 A W_1 B$ and $T_2 = R_2 B W_2 A$ be global transactions.

 $S_1 : R_1 (l_1) W_1 (l_1) R_1 A R_2 (l_1) W_2 (l_1) W_2 A$
 $S_2 : R_2 (l_2) W_2 (l_2) R_2 B R_1 (l_2) W_1 (l_2) W_1 B$

Not serializable, could not be detected neither at server 1 nor at server 2, however the order of take-a-ticket operations does not imply a linear order on the global transactions.
Applying ticketing by examples

By I_j we denote the ticket at server j.

- Let $T_1 = R_1A R_1D$ and $T_2 = R_2B R_2C$ be global transactions and let $T_3 = R_3A R_3B W_3A W_3B$ and $T_4 = R_4D W_4D R_4C W_4C$ be local transactions.

 S_1 : $R_1(I_1) W_1(I_1) R_1A R_3A R_3B W_3A W_3B R_2(I_1) W_2(I_1) R_2B$

 S_2 : $R_4D W_4D R_1(I_2) W_1(I_2) R_1D R_2(I_2) W_2(I_2) R_2C R_4C W_4C$

Not serializable - could be detected at server 2.

- Let $T_1 = R_1A W_1B$ and $T_2 = R_2B W_2A$ be global transactions.

 S_1 : $R_1(I_1) W_1(I_1) R_1A R_2(I_1) W_2(I_1) W_2A$

 S_2 : $R_2(I_2) W_2(I_2) R_2B R_1(I_2) W_1(I_2) W_1B$

Not serializable, could not be detected neither at server 1 nor at server 2, however the order of take-a-ticket operations does not imply a linear order on the global transactions.