
9. Reliability Page 1

9. Reliability

Aspects and Definitions

A measure of success with which a system conforms to some authoritative
specification of its behavior.

Probability that the system does not experience failures within a given period.

Typically used to describe systems that cannot be repaired or where the
continuous operation of the system is critical.

In transactional context: How to maintain Atomicity and Durability

Crash and crash recovery

By crash all kinds of failures are denoted that bring down a server and cause all
data in volatile memory to be lost (soft crash), but leave all data on stable
secondary storage intact, i.e. not a (hard crash).

A crash recovery algorithm restarts the server and brings its permanent data back
to its most recent, consistent state

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift



9. Reliability Page 2

During crash recovery after a system failure, a server and its data are unavailable to

clients. Goal: minimize recovery time

Recovery performance and system availability

MTBF: mean time between failure

MTTR: mean time to repair

Availability: probability for a server to be ready to serve:

MTBF

MTBF + MTTR

Examples

Server fails once a month and takes 2 hours to recover: availability of 99.7%,
downtime of 26 h a year.

Server fails once every 48 h and takes 30 sec to recover: availability of 99.98%,
downtime of 105 min a year.

=⇒ Fast recovery is the key to high availability!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability Page 3

During crash recovery after a system failure, a server and its data are unavailable to

clients. Goal: minimize recovery time

Recovery performance and system availability

MTBF: mean time between failure

MTTR: mean time to repair

Availability: probability for a server to be ready to serve:

MTBF

MTBF + MTTR

Examples

Server fails once a month and takes 2 hours to recover: availability of 99.7%,
downtime of 26 h a year.

Server fails once every 48 h and takes 30 sec to recover: availability of 99.98%,
downtime of 105 min a year.

=⇒ Fast recovery is the key to high availability!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability Page 4

During crash recovery after a system failure, a server and its data are unavailable to

clients. Goal: minimize recovery time

Recovery performance and system availability

MTBF: mean time between failure

MTTR: mean time to repair

Availability: probability for a server to be ready to serve:

MTBF

MTBF + MTTR

Examples

Server fails once a month and takes 2 hours to recover: availability of 99.7%,
downtime of 26 h a year.

Server fails once every 48 h and takes 30 sec to recover: availability of 99.98%,
downtime of 105 min a year.

=⇒ Fast recovery is the key to high availability!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability Page 5

Local Reliablity Protocols

ARIES:

Write-ahead Logging

Repeating History on Crash

Distributed Reliability Protocols

Commit Protocols

How to execute commit command for distributed transactions?
How to ensure Atomicity and Durability?

Termination Protocols

If a failure occurs, how can the remaining operational sites deal with it?
Non-blocking : the occurrence of failures should not force the sites to wait
until the failure is repaired to terminate the transaction.

Recovery Protocols

When a failure occurs, how do the sites where it occurred deal with it?
Independent: a failed site can determine the outcome of a transaction
without having to obtain remote information.

=⇒ Independent recovery → Non-blocking termination
Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 6

9.1. Commit coordination

The coordination problem during the commit-phase.

Given a computation defined by a set of subtransactions each running at a seperate
server. How can we ensure that either all subtransactions commit to the final result, or
none of them do (atomicity)? To reach a unique decision among the subtransactions, a
coordinator process is initiated running at one of the involved servers.

A subtransaction may be aborted even after having reached the end because of
some faulty other subtransaction.

Therefore, during its commit-phase each subtransaction must figure out whether
it and all the others will finish their commit-phase successfully.

If this is not possible, all subtransaction have to be aborted.

Reaching a global commit must be achieved by passing messages.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 7

9.1. Commit coordination

The coordination problem during the commit-phase.

Given a computation defined by a set of subtransactions each running at a seperate
server. How can we ensure that either all subtransactions commit to the final result, or
none of them do (atomicity)? To reach a unique decision among the subtransactions, a
coordinator process is initiated running at one of the involved servers.

A subtransaction may be aborted even after having reached the end because of
some faulty other subtransaction.

Therefore, during its commit-phase each subtransaction must figure out whether
it and all the others will finish their commit-phase successfully.

If this is not possible, all subtransaction have to be aborted.

Reaching a global commit must be achieved by passing messages.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 8

9.1. Commit coordination

The coordination problem during the commit-phase.

Given a computation defined by a set of subtransactions each running at a seperate
server. How can we ensure that either all subtransactions commit to the final result, or
none of them do (atomicity)? To reach a unique decision among the subtransactions, a
coordinator process is initiated running at one of the involved servers.

A subtransaction may be aborted even after having reached the end because of
some faulty other subtransaction.

Therefore, during its commit-phase each subtransaction must figure out whether
it and all the others will finish their commit-phase successfully.

If this is not possible, all subtransaction have to be aborted.

Reaching a global commit must be achieved by passing messages.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 9

2-Phase-Commit Protocol

how it works

The client who inititated the computation acts as coordinator; processes required
to commit are the participants.

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation. If
it sends vote-commit, it writes its state to disk

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
global-commit to all participants, otherwise it sends global-abort.

Phase 2b: Each participant waits for global-commit or global-abort and reacts
accordingly - discarding the result or making it permanent.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 10

2-Phase-Commit Protocol

how it works

The client who inititated the computation acts as coordinator; processes required
to commit are the participants.

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation. If
it sends vote-commit, it writes its state to disk

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
global-commit to all participants, otherwise it sends global-abort.

Phase 2b: Each participant waits for global-commit or global-abort and reacts
accordingly - discarding the result or making it permanent.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 11

2-Phase-Commit Protocol

how it works

The client who inititated the computation acts as coordinator; processes required
to commit are the participants.

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation. If
it sends vote-commit, it writes its state to disk

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
global-commit to all participants, otherwise it sends global-abort.

Phase 2b: Each participant waits for global-commit or global-abort and reacts
accordingly - discarding the result or making it permanent.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 12

Notation: message received
message sent

msg∗: message sent-to/received-from all

State transitions during 2PC.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 13

Distributed Transaction Log: DT log at each site

DT log maintenance

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 14

Distributed Transaction Log: DT log at each site

DT log maintenance

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 15

Distributed Transaction Log: DT log at each site

DT log maintenance

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 16

Distributed Transaction Log: DT log at each site

DT log maintenance

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 17

Distributed Transaction Log: DT log at each site

DT log maintenance

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 18

Termination Protocol: Coordinator Timeouts

Timeout @ WAIT

Can not unilaterally commit.
Can abort and send
Global-abort, since no global
commit has been made

Timeout @ ABORT / COMMIT

Repeatedly send Global-abort /
Global-commit to the
unresponsive participants.
Stay blocked and wait for their
ACK messages.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 19

Termination Protocol: Participant Timeouts

Timeout @ INITIAL

Coordinator must have failed at
INITIAL.
Can abort.
If Prepare arrives later, can
either Vote-abort or ignore it
(i.e., let the coordinator timeout
@WAIT).

Timeout @ READY

Can not unilaterally commit or
change its decision to an abort.
Stay blocked.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 20

Recovery Protocol: Coordinator Failures

Failure @ INITIAL

Start the commit process upon
recovery.

Failure @ WAIT

Restart the commit process upon
recovery.

Failure @ ABORT / COMMIT

If all ACKs have been received,
nothing to do.
Else, invoke the termination
protocol.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 21

Recovery Protocol: Participant Failures

Failure @ INITIAL

Abort upon recovery.

Timeout @ READY

The coordinator has already
been informed about the local
decision.
Treat as Timeout @ READY and
invoke the termination protocol.

Timeout @ ABORT/COMMIT

Nothing to do

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 22

Recovery Protocol at Log Level

If the DT log contains a start-2PC record, then S was the host of the
coordinator. If it also contains a commit or abort record, then the coordinator
had decided before the failure and it can resend its decision. If neither record is
found, the coordinator can now unilaterally decide Abort by inserting an abort
record in the DT log.

If the DT log doesn’t contain a start-2PC record, then S was the host of a
participant. There are three cases to consider:

(1) The DT log contains a commit or abort record. Then the participant had
reached its decision before the failure.

(2) The DT log does not contain a vote-commit record. Then either the
participant failed before voting or voted vote-abort (but did not write an
abort record before failing). It can therefore unilaterally abort by inserting an
abort record in the DT log.

(3) The DT log contains a vote-commit but no commit or abort record. Then
the participant failed while in its uncertainty period. It can try to reach a
decision using the cooperative termination protocol.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 23

Recovery Protocol at Log Level

If the DT log contains a start-2PC record, then S was the host of the
coordinator. If it also contains a commit or abort record, then the coordinator
had decided before the failure and it can resend its decision. If neither record is
found, the coordinator can now unilaterally decide Abort by inserting an abort
record in the DT log.

If the DT log doesn’t contain a start-2PC record, then S was the host of a
participant. There are three cases to consider:

(1) The DT log contains a commit or abort record. Then the participant had
reached its decision before the failure.

(2) The DT log does not contain a vote-commit record. Then either the
participant failed before voting or voted vote-abort (but did not write an
abort record before failing). It can therefore unilaterally abort by inserting an
abort record in the DT log.

(3) The DT log contains a vote-commit but no commit or abort record. Then
the participant failed while in its uncertainty period. It can try to reach a
decision using the cooperative termination protocol.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 24

Recovery Protocol at Log Level

If the DT log contains a start-2PC record, then S was the host of the
coordinator. If it also contains a commit or abort record, then the coordinator
had decided before the failure and it can resend its decision. If neither record is
found, the coordinator can now unilaterally decide Abort by inserting an abort
record in the DT log.

If the DT log doesn’t contain a start-2PC record, then S was the host of a
participant. There are three cases to consider:

(1) The DT log contains a commit or abort record. Then the participant had
reached its decision before the failure.

(2) The DT log does not contain a vote-commit record. Then either the
participant failed before voting or voted vote-abort (but did not write an
abort record before failing). It can therefore unilaterally abort by inserting an
abort record in the DT log.

(3) The DT log contains a vote-commit but no commit or abort record. Then
the participant failed while in its uncertainty period. It can try to reach a
decision using the cooperative termination protocol.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 25

Recovery Protocol at Log Level

If the DT log contains a start-2PC record, then S was the host of the
coordinator. If it also contains a commit or abort record, then the coordinator
had decided before the failure and it can resend its decision. If neither record is
found, the coordinator can now unilaterally decide Abort by inserting an abort
record in the DT log.

If the DT log doesn’t contain a start-2PC record, then S was the host of a
participant. There are three cases to consider:

(1) The DT log contains a commit or abort record. Then the participant had
reached its decision before the failure.

(2) The DT log does not contain a vote-commit record. Then either the
participant failed before voting or voted vote-abort (but did not write an
abort record before failing). It can therefore unilaterally abort by inserting an
abort record in the DT log.

(3) The DT log contains a vote-commit but no commit or abort record. Then
the participant failed while in its uncertainty period. It can try to reach a
decision using the cooperative termination protocol.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 26

DT log garbage collection

A site cannot delete log records of a transaction T from its DT log before its
recovery manager has processed Commit or Abort.

The coordinator should not delete the records of transaction T from its DT log
until it has received messages indicating that Commit or Abort has been
processed at all other sites where T executed. To this end participants may send
a final ACK-message when moving in their commit-state.

In the literature there are many optimizations described for 2PC - have a look
into the Weikum-Vossen book, for example!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 27

DT log garbage collection

A site cannot delete log records of a transaction T from its DT log before its
recovery manager has processed Commit or Abort.

The coordinator should not delete the records of transaction T from its DT log
until it has received messages indicating that Commit or Abort has been
processed at all other sites where T executed. To this end participants may send
a final ACK-message when moving in their commit-state.

In the literature there are many optimizations described for 2PC - have a look
into the Weikum-Vossen book, for example!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 28

2-Phase-Commit Variants

decentralized 2PC

Phase 1: Coordinator sends, depending on its vote, vote-commit or vote-abort to
all participants.

Phase 2a: When a participant receives vote-abort from the coordinator, it simply
aborts. Otherwise it has received vote-commit and returns either commit or abort
to coordinator and to all other participants. If it sends abort, it aborts its local
computation.

Phase 2b: After having received all votes, the coordinator and all participants
have all votes available; if all are commit, they commit and otherwise abort.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 29

2-Phase-Commit Variants

decentralized 2PC

Phase 1: Coordinator sends, depending on its vote, vote-commit or vote-abort to
all participants.

Phase 2a: When a participant receives vote-abort from the coordinator, it simply
aborts. Otherwise it has received vote-commit and returns either commit or abort
to coordinator and to all other participants. If it sends abort, it aborts its local
computation.

Phase 2b: After having received all votes, the coordinator and all participants
have all votes available; if all are commit, they commit and otherwise abort.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 30

Notation: message received
message sent

msg∗: message sent-to/received-from all

State transitions during decentralized 2PC.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 31

linear 2PC

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 32

linear 2PC

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 33

linear 2PC

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 34

linear 2PC

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 35

linear 2PC

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 36

Notation: message received
message sent

State transitions during linear 2PC.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 37

Comparison

Message Complexity: How many messages are exchanged to reach a decision?
Time Complexity: How long does it take to reach the decision? As several messages
can be send in parallel, the number of message exchange rounds is counted.

Number of messages Rounds of communication

centralized 2PC 3n 3
decentralized 2PC
linear 2PC

n participants.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 38

Comparison

Message Complexity: How many messages are exchanged to reach a decision?
Time Complexity: How long does it take to reach the decision? As several messages
can be send in parallel, the number of message exchange rounds is counted.

Number of messages Rounds of communication

centralized 2PC 3n 3
decentralized 2PC
linear 2PC

n participants.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 39

Under which assumptions does 2PC work correctly, i.e. will not block?

Possible failures

Assumption: A site is either working correctly (is operational) or not working at all (is
down).1

partial site failure:

Some sites are operational, some sites are down.

total site failure:

All sites are down.

communication failure:

Some site A is not able to communicate with some site B, even though none of
them is down. This may be due to broken communication links or site failures.

2PC may be blocking even in case of only partial failures. =⇒ 3PC

1Also called fail-stop, because sites fail only by stopping, i.e. don’t work incorrectly.
Contrast this with Byzantine failures!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 40

Under which assumptions does 2PC work correctly, i.e. will not block?

Possible failures

Assumption: A site is either working correctly (is operational) or not working at all (is
down).1

partial site failure:

Some sites are operational, some sites are down.

total site failure:

All sites are down.

communication failure:

Some site A is not able to communicate with some site B, even though none of
them is down. This may be due to broken communication links or site failures.

2PC may be blocking even in case of only partial failures. =⇒ 3PC

1Also called fail-stop, because sites fail only by stopping, i.e. don’t work incorrectly.
Contrast this with Byzantine failures!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 41

Under which assumptions does 2PC work correctly, i.e. will not block?

Possible failures

Assumption: A site is either working correctly (is operational) or not working at all (is
down).1

partial site failure:

Some sites are operational, some sites are down.

total site failure:

All sites are down.

communication failure:

Some site A is not able to communicate with some site B, even though none of
them is down. This may be due to broken communication links or site failures.

2PC may be blocking even in case of only partial failures. =⇒ 3PC

1Also called fail-stop, because sites fail only by stopping, i.e. don’t work incorrectly.
Contrast this with Byzantine failures!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 42

Under which assumptions does 2PC work correctly, i.e. will not block?

Possible failures

Assumption: A site is either working correctly (is operational) or not working at all (is
down).1

partial site failure:

Some sites are operational, some sites are down.

total site failure:

All sites are down.

communication failure:

Some site A is not able to communicate with some site B, even though none of
them is down. This may be due to broken communication links or site failures.

2PC may be blocking even in case of only partial failures. =⇒ 3PC

1Also called fail-stop, because sites fail only by stopping, i.e. don’t work incorrectly.
Contrast this with Byzantine failures!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 43

3-Phase-Commit Protocol

In contrast to 2PC, 3PC tolerates partial failures by guaranteeing the property NB

The period between the moment a process votes Yes for commit and the moment
it has received sufficient information to know the decision is called uncertainty
period. During its uncertainty period a process is called uncertain.

NB: If any operational process is uncertain, then no process (whether operational or
failed) can have decided to commit.

As a consequence, if the operational sites discover, that they all are uncertain,
they can decide to abort, as the other failed process cannot have decided commit
before.

3PL splits the commit/abort phase in two steps

First communicate the outcome to everyone (but not force them to commit)
Let them commit only after everyone knows the outcome

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 44

3-Phase-Commit Protocol

In contrast to 2PC, 3PC tolerates partial failures by guaranteeing the property NB

The period between the moment a process votes Yes for commit and the moment
it has received sufficient information to know the decision is called uncertainty
period. During its uncertainty period a process is called uncertain.

NB: If any operational process is uncertain, then no process (whether operational or
failed) can have decided to commit.

As a consequence, if the operational sites discover, that they all are uncertain,
they can decide to abort, as the other failed process cannot have decided commit
before.

3PL splits the commit/abort phase in two steps

First communicate the outcome to everyone (but not force them to commit)
Let them commit only after everyone knows the outcome

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 45

3-Phase-Commit Protocol

In contrast to 2PC, 3PC tolerates partial failures by guaranteeing the property NB

The period between the moment a process votes Yes for commit and the moment
it has received sufficient information to know the decision is called uncertainty
period. During its uncertainty period a process is called uncertain.

NB: If any operational process is uncertain, then no process (whether operational or
failed) can have decided to commit.

As a consequence, if the operational sites discover, that they all are uncertain,
they can decide to abort, as the other failed process cannot have decided commit
before.

3PL splits the commit/abort phase in two steps

First communicate the outcome to everyone (but not force them to commit)
Let them commit only after everyone knows the outcome

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 46

3-Phase-Commit Protocol

In contrast to 2PC, 3PC tolerates partial failures by guaranteeing the property NB

The period between the moment a process votes Yes for commit and the moment
it has received sufficient information to know the decision is called uncertainty
period. During its uncertainty period a process is called uncertain.

NB: If any operational process is uncertain, then no process (whether operational or
failed) can have decided to commit.

As a consequence, if the operational sites discover, that they all are uncertain,
they can decide to abort, as the other failed process cannot have decided commit
before.

3PL splits the commit/abort phase in two steps

First communicate the outcome to everyone (but not force them to commit)
Let them commit only after everyone knows the outcome

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 47

3-phase commit (3PC) protocol

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
prepare-commit to all participants, otherwise it sends global-abort, and halts.

Phase 2b: Each participant that voted vote-commit waits for prepare-commit, or
waits for global-abort after which it halts. If prepare-commit is received, the
process replies ready-commit and therefore the coordinator knows that this
process is no longer uncertain.

Phase 3a: (Prepare to commit) Coordinator waits until all participants have sent
ready-commit, and then sends global-commit to all.

Phase 3b: (Prepare to commit) Participant waits for global-commit and then
commits. It knows that no other process is uncertain and thus commits without
violating NB.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 48

3-phase commit (3PC) protocol

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
prepare-commit to all participants, otherwise it sends global-abort, and halts.

Phase 2b: Each participant that voted vote-commit waits for prepare-commit, or
waits for global-abort after which it halts. If prepare-commit is received, the
process replies ready-commit and therefore the coordinator knows that this
process is no longer uncertain.

Phase 3a: (Prepare to commit) Coordinator waits until all participants have sent
ready-commit, and then sends global-commit to all.

Phase 3b: (Prepare to commit) Participant waits for global-commit and then
commits. It knows that no other process is uncertain and thus commits without
violating NB.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 49

3-phase commit (3PC) protocol

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
prepare-commit to all participants, otherwise it sends global-abort, and halts.

Phase 2b: Each participant that voted vote-commit waits for prepare-commit, or
waits for global-abort after which it halts. If prepare-commit is received, the
process replies ready-commit and therefore the coordinator knows that this
process is no longer uncertain.

Phase 3a: (Prepare to commit) Coordinator waits until all participants have sent
ready-commit, and then sends global-commit to all.

Phase 3b: (Prepare to commit) Participant waits for global-commit and then
commits. It knows that no other process is uncertain and thus commits without
violating NB.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 50

Notation: message received
message sent

State transitions during 3PC.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 51

Termination Protocol: Coordinator Timeouts

Timeout @ PRECOMMIT

Participants must be at least in
READY.
Move all the participants to
PRECOMMIT.
Globally commit

Timeout @ ABORT / COMMIT

Ignore and treat as completed
Participants are either at
PRECOMMIT or READY and
they can continue to
termination.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 52

Termination Protocol: Participant Timeouts

Timeout @ INITIAL

Coordinator must have failed at
INITIAL.
Can abort.
If Prepare arrives later, can
either Vote-abort or ignore it
(i.e., let the coordinator timeout
@WAIT).

Timeout @ READY

Voted to commit, but does not
know the coordinator’s global
decision.
Elect a new coordinator and
terminate using a special
protocol.

Timeout @ PRECOMMIT

Same as Timeout @ READY

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 53

Recovery Protocol: Coordinator Failures

Failure @ INITIAL

Start the commit process upon
recovery.

Failure @ WAIT

The participants may have
elected a new coordinator and
terminated.
Ask around for the fate of the
transaction

Failure @ PRECOMMIT

Ask around for the fate of the
transaction

Failure @ ABORT / COMMIT

If all ACKs have been received,
nothing to do.
Else, invoke the termination
protocol.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer

fischerp
Bleistift



9. Reliability 9.1. Commit coordination Page 54

Recovery Protocol: Participant Failures

Failure @ INITIAL

Abort upon recovery.

Timeout @ READY

The coordinator has already
been informed about the local
decision.
Upon Recovery, ask around

Timeout @ PRECOMMIT

Ask around how the others have
terminated the transaction

Timeout @ ABORT/COMMIT

Nothing to do

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 55

To proof correctness and termination of 3PC is difficult. Let’s look at one case to
demonstrate what could happen.

If a participant P times out in state PRECOMMIT, why can’t it ignore the timeout
and simply decide for commit?

The coordinator may have failed after having sent a prepare-commit-messsage to
P but before sending it to some other Q.

Thus P times out outside its uncertainty period while Q will time out inside its
uncertainty period.

Thus, committing of P would violate NB.

Therefore, before committing, P must assure, that all operational participants
have received a prepare-commit-messsage and therefore moved outside their
uncertainty period.

To this end a dedicated termination protocol has to be applied.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 56

To proof correctness and termination of 3PC is difficult. Let’s look at one case to
demonstrate what could happen.

If a participant P times out in state PRECOMMIT, why can’t it ignore the timeout
and simply decide for commit?

The coordinator may have failed after having sent a prepare-commit-messsage to
P but before sending it to some other Q.

Thus P times out outside its uncertainty period while Q will time out inside its
uncertainty period.

Thus, committing of P would violate NB.

Therefore, before committing, P must assure, that all operational participants
have received a prepare-commit-messsage and therefore moved outside their
uncertainty period.

To this end a dedicated termination protocol has to be applied.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 57

To proof correctness and termination of 3PC is difficult. Let’s look at one case to
demonstrate what could happen.

If a participant P times out in state PRECOMMIT, why can’t it ignore the timeout
and simply decide for commit?

The coordinator may have failed after having sent a prepare-commit-messsage to
P but before sending it to some other Q.

Thus P times out outside its uncertainty period while Q will time out inside its
uncertainty period.

Thus, committing of P would violate NB.

Therefore, before committing, P must assure, that all operational participants
have received a prepare-commit-messsage and therefore moved outside their
uncertainty period.

To this end a dedicated termination protocol has to be applied.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



9. Reliability 9.1. Commit coordination Page 58

Termination rules

By applying an election protocol among all operational processes determin a new
coordinator.

(1) If some process is Aborted, the coordinator decides Abort, sends ABORT
messages to all participants, and stops.

(2) If some process is Committed2, the coordinator decides Commit, sends COMMIT
messages to all participants, and stops.

(3) If all processes that reported their state are Uncertain, the coordinator decides
Abort, sends ABORT messages to all participants, and stops.

(4) If some process is Committable but none is Committed, the coordinator first
sends PRE-COMMIT messages to all processes that reported Uncertain, and
waits for acknowledgments from these processes. After having received these
acknowledgments the coordinator decides Commit, sends COMMIT messages to
all processes, and stops.

Processes may fail during the termination protocol! The protocol then has to be
repeated - either it will be finished by some coordinator or all processes will fail.

2This may have happened in a previous round of the termination protocol.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer


	Reliability
	Commit coordination


