
10. Replication Page 1

10. Replication

Motivation

Reliable and high-performance computation on a single instance of a data object
is prone to failure.

Replicate data to overcome single points of failure and performance bottlenecks.

Problem: Accessing replicas uncoordinatedly can lead to different values for each
replica, jeopardizing consistency.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication Page 2

Basic architectural model

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication Page 3

Passive (primary-backup) replication model

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication Page 4

Active replication model

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication Page 5

CAP Theorem

From the three desirable properties of a distributed shared-data system:

atomic data consistency (i.e. operations on a data item look as if they were
completed at a single instant),

system availability (i.e. every request received by a non-failing node must result in
a response), and

tolerance to network partition (i.e. the system is allowed to lose messages),

only two can be achieved at the same time at any given time.

=⇒ Given that in distributed large-scale systems network partitions cannot be avoided,
consistency and availability cannot be achieved at the same time.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication Page 6

the two options:

Distributed ACID-transactions:

Consistency has priority, i.e. updating replicas is part of the transaction - thus
availability is not guaranteed.

Large-scale distributed systems:

Availability has priority - thus a weaker form of consistency is accepted:
eventually consistent.

=⇒ Inconsistent updates may happen and have to be resolved on the application
level, in general.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication Page 7

Eventually Consistent - Revisited. Werner Vogels (CTO at Amazon):1

Strong consistency

After the update completes, any subsequent access will return the updated value.

Weak consistency

The system does not guarantee that subsequent accesses will return the updated value.
A number of conditions need to be met before the value will be returned. The period
between the update and the moment when it is guaranteed that any observer will always
see the updated value is dubbed the inconsistency window.

Eventual consistency

This is a specific form of weak consistency; the storage system guarantees that if no new
updates are made to the object, eventually all accesses will return the last updated value.
If no failures occur, the maximum size of the inconsistency window can be determined
based on factors such as communication delays, the load on the system, and the number
of replicas involved in the replication scheme. The most popular system that implements
eventual consistency is DNS (Domain Name System). Updates to a name are distributed
according to a configured pattern and in combination with time-controlled caches;
eventually, all clients will see the update.

1http://www.allthingsdistributed.com/2008/12/eventually consistent.html

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication 10.1. Systemwide Consistency Page 8

10.1: Systemwide Consistency

Systemwide consistent view on a data store.

Processes read and write data in a data store.

Each process has a local (or near-by) copy of each object,
Write operations are propagated to all replicas.

Even if rocesses are not considered to be transactions, we would expect, that read
operations will always return the value of the last write – however what does
”last” mean in the absense of a global clock?

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication 10.1. Systemwide Consistency Page 9

The difficulty of strict consistency

Any read on a data item returns the value of the most recent write on it.

This is the expected model of a uniprocessor system.

In a distributed system there does not exist a global clock!

TimeProcess A Process B

Read(x)
located at B

Write(x)

Which value shall be returned? 
Old or new one?

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication 10.2. Client-side Consistency Page 10

10.2: Client-side consistency

Consistent view on a data store shall be guaranteed for clients, not necessarily for the
whole system.

Goal: eventual consistency.

In the absence of updates, all replicas converge towards identical copies of
each other.
However, it should be guaranteed, that if a client has access to different
replica, it sees consistent data.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication 10.2. Client-side Consistency Page 11

Example: Client works with two different replica.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication 10.3. Server-side Consistency Page 12

10.3 Server-side Consistency

Problem

We would like to achieve consistency between the different replicas of one object.

This is an issue for active replication.

It is further complicated by the possibility of network partitioning.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication 10.3. Server-side Consistency Page 13

Active Replication

Update operations are propagated to each replica.

It has to be guaranteed, that different updates have to be processed in the same
order for each replica.

This can be achieved by totally-ordered multicast or by establishing a central
coordinator called sequencer, which assigns unique sequence numbers which
define the order in which updates have to be carried out.

These approaches do not scale well in large distributed systems.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication 10.3. Server-side Consistency Page 14

Quorum-Based Protocols

Idea: Clients have to request and acquire the permission of multiple servers before
either reading or writing a replicated data item.

Assume an object has N replicas.

For update, a client must first contact at least N
2

+ 1 servers and get them
to agree to do the update. Once they have agreed, all contacted servers
process the update assigning a new version number to the updated object.
For read, a client must first contact at least N

2
+ 1 servers and ask them to

send the version number of their local version. The client will then read the
replica with the highest version number.

This approach can be generalized to an arbitrary read quorum NR and write
quorum NW such that holds:

NR + NW > N,
NW > N

2
.

This approach is called quorum consensus method.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



10. Replication 10.3. Server-side Consistency Page 15

Example

(a) Correct choice of read and write quorum.

(b) Choice running into possible inconsistencies.

(c) Correct choice known as ROWA (read one, write all).

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



11. Real-World Considerations and Systems Page 16

11. Real-World Considerations
Obervations

CAP theorem puts a natural limit on classical distributed transactions

Maintaining consistency very expensive due to large number of messages (high
latency)

Web-facing datamanagement poses new challenges:

Large scalability (towards billions of users)
High availability (24x7 operations, global use)
Low response times
Write-intensive operations (shopping baskets, social media)

Approaches

NoSQL systems (2005 - now): simple data model, limited operations, reduced
consistency

NewSQL systems (2010 - now): SQL+ACID+scalability

=⇒ very active area in research and product development

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



11. Real-World Considerations and Systems 11.1. NoSQL Page 17

11.1: NoSQL

Overview

Catch-all phrase for basically all non-relational and/or non-ACID systems

Very promiment subclass: Distributed Key/Value-Stores

automatic partitioning and replication

relaxed and tuneable consistency: trading off availability and consistency

Examples: Apache Cassandra, MongoDB, ...

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



11. Real-World Considerations and Systems 11.1. NoSQL Page 18

Cassandra: Background and Concepts

Based on Amazon Dynamo/Google BigTable ideas

Open-source software

Key-value store distributed across nodes by key

Not a relational table with many column, many access possibilities
Instead a key-¿value mapping like in a hash table

A value can have a complex structure as it is inside the node - in Cassandra it is
columns and super columns

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



11. Real-World Considerations and Systems 11.1. NoSQL Page 19

Partitioning and Replication

Consistent Hashing: Hash Keys and node IDs mapped to (same) circled space

Each node covers a segment of the rings

Easy additions/removal and balancing

content replicated on N subsequent nodes of the ring

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



11. Real-World Considerations and Systems 11.1. NoSQL Page 20

Consistency Levels

CAP theorem allows 2 out of 3

(C)onsistency
(A)vailability
(P)artition tolerance

Options

CA: corruption possible
CP: not available if any nodes are down/blocked
AP: always available but clients may not always read most recent updates

Most systems provide CP or AP (why not CA?)

Cassandra prefers AP but makes ”C versus A” configurable by allowing the user
to specify a consistency level for each operation

Consistency levels are handled by setting the quorum for read and write operations

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



11. Real-World Considerations and Systems 11.1. NoSQL Page 21

Dealing with eventual consistency

When W < N (not all replicas are updated) the update is propagated in
background

Version resolution:

Each value in a database has a timestamp =¿ key, value, timestemp
The timestamp is the timestamp of the latest update of the value (the client
must provide a timestamp with each update)
When an update is propagated, the latest timestamp wins

There are two mechanisms to propagate updates:

Read repair: hot keys
Anti-Entropy: cold keys

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



11. Real-World Considerations and Systems 11.1. NoSQL Page 22

Read Repair

Perform read on multiple replicas.

Perform reconciliation (e.g. pick the most recent)

Update all read replicas to the chosen version

Anti-Entropy

AE is used to repair cold keys - keys that have not been read, since they were last
written

AE works as follows:

It generates Merkle Trees for tables periodically
These trees are then exchanged with remote nodes using a gossip protocol
When ranges in the trees disagree, the corresponding data are transferred
between replicas to repair those ranges

N.B. Merkle Tree (or hash trees ) are a compact representation of data for
comparison:

A Merkle tree is a hash tree where leaves are hashes of individual values.
Parent nodes higher in the tree are hashes of their respective children.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



11. Real-World Considerations and Systems 11.2. NewSQL Page 23

11.2: NewSQL

Overview

Absence of transactional guarantees cumbersome for developers

Focus on getting as many SQL/ACID properities while providing (close to)
NoSQL scalability

Main directions:

1 speeding up/scaling up closely-coupled systems
2 ”Tweaking” consistency models and coordination
3 clever implementations

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



11. Real-World Considerations and Systems 11.2. NewSQL Page 24

H-Store/Volt-DB: Concepts

Aimed at transaction-heavy workloads, providing ACID and high scalability

Breaks several assumptions how do DB design with updates

Aimed at small-scale clusteres (no latency penalty), but providing very high
speeds

Design Considerations

Main-Memory Databases, since most transactional workloads need less than 1 TB

Single-Thread per core execution model

No delays from disk I/O
No long-running transactions allowed: typical update queries take few
milliseconds!
reduces synchronisation cost

Availability via replication, not log shipping

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



11. Real-World Considerations and Systems 11.2. NewSQL Page 25

Implementation

Shared-nothing architecture over a cluster

Further shared-nothing decomposition among CPU cores

dedicated data structures: tables, indexes
transactions run sequentially/serial on a core

Transactions are known in advance

Expressed as stored procedures
Information on data access drives scheduling and replication

Transactions are executed as much as possible on a single site

=⇒ very high transaction rates: several 100K transactions per second per node

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



11. Real-World Considerations and Systems 11.2. NewSQL Page 26

Google Spanner/F1

Massively distributed database, aimed at million servers over the whole world

Provide synchronous replication

ACID-style transactional semantics

Replication

Replicas coordinated with Paxos

Application specify

Datacenters
Distance from application (read latency)
Distances among replicas (write latency)
Number of replicas (durability, availability, read performance)¡

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



11. Real-World Considerations and Systems 11.2. NewSQL Page 27

Synchronisation via Time

Global time hard to achieve!

Accept bounded uncertainty

Establish via GPS and atomic clocks
use interval time to define now, before, after

Use Timestamp-based synchronisation and two-phase commit

Performance

High commit latency incurred by 2PC over distributed replicas

Latency hiding via

Hierarchical schema: provide partitoning/placement info at schema level (US
data at US, European data in the EU)
Efficient transfer: protocol buffers
Batch reading and writing

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer


	Replication
	Systemwide Consistency
	Client-side Consistency
	Server-side Consistency

	Real-World Considerations and Systems
	NoSQL
	NewSQL


