Chapter 12: Modeling and Analysis of Distributed
Applications
PP wslect
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Petri-Nets

m Petri-nets are abstract formal models capturing the flow of information and
objects in a way which makes it possible to describe distributed systems and
processes at different levels of abstraction in a unified language.

m Petri-nets have the name from their inventor Carl Adam Petri, who introduced
this formalism in his PhD-thesis 1962.
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12. Petri-Nets

Processing of complaints: informal description.

Customer
inquiring

s
e

Complaint
processing
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Complaints processing: formal Petri-net orchestration.’
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1van der Aalst: The Application of Petri nets to Workflow Management. Journal of Circuits, Systems, and Computers 8(1): 21-66 (1998)
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12. Petri-Nets

Petri-nets
Petri-nets model system dynamics.

m Activities trigger state transitions,
B activities impose control structures,

m applicable for modelling discrete systems.
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12. Petri-Nets

Petri-nets

Petri-nets model system dynamics.
m Activities trigger state transitions,
B activities impose control structures,

m applicable for modelling discrete systems.

Benefits

m Uniform language,

m can be used to model sequential, causual independent (concurrent, parallel,
nondeterministic) and monitored exclusive activities.

m open for formal analysis, verification and simulation,

m graphical intuitive representation.
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12. Petri-Nets

Petri-nets

Petri-nets model system dynamics.
m Activities trigger state transitions,
B activities impose control structures,

m applicable for modelling discrete systems.

Benefits

m Uniform language,

m can be used to model sequential, causual independent (concurrent, parallel,
nondeterministic) and monitored exclusive activities.

m open for formal analysis, verification and simulation,

m graphical intuitive representation.

The name Petri-net denotes a variety of different versions of nets - we will discuss the
special case of System Nets following the naming introduced by W. Reisig.
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Section 12.1 Elementary System Nets
A D $p I =
UTL
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Basic elements of an elementary System Net (eS-Net)

O Mot ‘
Ok o me /Jtﬂ/\

m System states are represented by places, graphically circles or ovals. @ = _

m A place may be marked by an arbitrary number of tokens graphically represented
by black dots.
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Section 12.1 Elementary System Nets

Basic elements of an elementary System Net (eS-Net)

System states are represented by places, graphically circles or ovals.

m A place may be marked by an arbitrary number of tokens graphically represented
by black dots.

System dynamics is represented by transitions, graphically rectangles. l__l

m Transitions represent activities (events) and the causalities between such
activities (events) are represented by edges.
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Section 12.1 Elementary System Nets

Basic elements of an elementary System Net (eS-Net)

m System states are represented by places, graphically circles or ovals.

m A place may be marked by an arbitrary number of tokens graphically represented
by black dots.

m System dynamics is represented by transitions, graphically rectangles.

% b
m Transitions represent activities (events) and the causalities between such Q\Ij/

activities (events) are represented by edges.

m Multiplicities represent the consumption, respectively creation of resources which
are caused by the occurence of activities.

P
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3-Philosopher-Problem

& b philosopher starts eating; e;: philosopher stops eating;
)j g € g
u/’ ij: philosopher is eating; gj: fork on the desk; FL

1<j<3. ﬁ

2
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A transition may occur when certain conditions with respect to the markings of its
directly connected places are fulfilled; the occurence of a transition - also called its
firing - effects the markings of its directly connected edges, i.e. has local effects.

S4
Skt
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12. Petri-Nets

A transition may occur when certain conditions with respect to the markings of its
directly connected places are fulfilled; the occurence of a transition - also called its
firing - effects the markings of its directly connected edges, i.e. has local effects.

The surrounding of a transition t is given by t and all its directly connected places:

S4
Skt

o o

si,...,Sk are called preconditions (pre-places), sk+1,...,S» postconditions
(post-places).
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A transition may occur when certain conditions with respect to the markings of its
directly connected places are fulfilled; the occurence of a transition - also called its
firing - effects the markings of its directly connected edges, i.e. has local effects.

The surrounding of a transition t is given by and all its directly connected places:

S4
Sk
)
0 .
. .
. 0
SKCD/v Osn
si,...,Sk are called preconditions (pre-places), sk+1,...,S» postconditions

(post-places).

A place which is pre- and post-place at the same time is called a loop.
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A net is given as a tripel N = (P, T, F), where
m P, the set of places, and T, the set of transitionen, are non-empty disjoint sets,

m FC(PxT)U(T x P), is the set of directed edges, called flow relation, which is
a binary relation such that dom(F) U cod(F) = PU T.

~ qu\.dA
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12. Petri-Nets

A net is given as a tripel N = (P, T, F), where
m P, the set of places, and T, the set of transitionen, are non-empty disjoint sets,

m FC(PxT)U(T x P), is the set of directed edges, called flow relation, which is
a binary relation such that dom(F) U cod(F) = PU T.

Let N=(P,T,F)beanetand xe PUT.

xF:={y|(x,y) € F}
Fx:={y|(y;x) € F}

For p € P, pF is the set of post-transitions of p; Fp is the set of pre-transitions of p.
For t € T, tF is the set of post-places of t; Ft is the set of pre-places of t.
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Let N = (P, T, F) be a net. Any mapping m from P into the set of natural numbers
NAT is called a marking of P.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



12. Petri-Nets

A |
O}

Let N = (P, T, F) be a net. Any mapping m from P into the set of natural numbers
NAT is called a marking of P.

A mapping P — NAT U {w} is called w-marking. w represents an infinitly large
number of tokens.
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12. Petri-Nets

Let N = (P, T, F) be a net. Any mapping m from P into the set of natural numbers
NAT is called a marking of P.

A mapping P — NAT U {w} is called w-marking. w represents an infinitly large
number of tokens.

Arithmetic of w:

w—n=w,w+n=w,n-w=w,0-w=0,w>n

where n € NAT,n > 0.
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12. Petri-Nets

‘— (P, T, F) be a net. Any mapping m froo the set of natural numbers

s called a marking of P.

A mapping P — NAT U {w} is called w-marking. w represents an infinitly large
number of tokens.

Arithmetic of w:
w—n=w,w+n=w,n-w=w,0-w=0,w>n
where n € NAT,n > 0.

A marking represents a possible system state.
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A eS-Net is given as N = (P, T, F,V, mp), where

m (P, T,F) anet,
VvV ®—> a multiplicity,

m mo a marking called initial marking.
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A eS-Net is given as N = (P, T, F,V, mp), where
m (P, T,F) a net,
m V:F — NATT a multiplicity,

m mo a marking called initial marking.

N is called ordinary eS-Net, whenever V(f) =1, Vf € F.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



12. Petri-Nets

A transition may fire once it is enabled.
Let N=(P,T,F,V,mo) a eS-Net, m a marking and t € T a transition.
m t is enabled at m, if for all pre-places p € Ft there holds: @ R

m(p) > V(p,t).
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12. Petri-Nets

A transition may fire once it is enabled.
Let N=(P,T,F,V,mo) a eS-Net, m a marking and t € T a transition.
m t is enabled at m, if for all pre-places p € Ft there holds:

m(p) > V(p,t).

m Whenever t is enabled at m, then t may fire at m. Firing t at m transforms m to
m’, m[t>=m’, in the following way:
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A transition may fire once it is enabled.
Let N=(P,T,F,V,mo) a eS-Net, m a marking and t € T a transition.
m t is enabled at m, if for all pre-places p € Ft there holds:

m(p) > V(p,t).

m’, m[t>=m’, in the following way: N

m(p) if p € Ft,p € tF,
i (p) 1= m(p) — V(p, t) if pe Ft,p & tF,
P}= m(p) + V(t, p) if p& Ft,p € tF, ®\,l’:}
m(p) otherwise. 6
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12. Petri-Nets

Transitions and markings in terms of vectors

Let places in P be linearily ordered.
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Transitions and markings in terms of vectors

Let places in P be linearily ordered.

(P
m Markings of a net can be considered as vecto P i >
dimension | P |, called place-vectors. 0O o O 11 1 J
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12. Petri-Nets

Transitions and markings in terms of vectors

Let places in P be linearily ordered.

m Markings of a net can be considered as vectors of nonnegative integers of
dimension | P |, called place-vectors.

m Transitions t can be characterized as vectors of nonnegative integers of dimension
| P |, called transition vectors At,t" t:
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Transitions and markings in terms of vectors
Let places in P be linearily ordered.

m Markings of a net can be considered as vectors of nonnegative integers of
dimension | P |, called place-vectors.

m Transitions t can be characterized as vectors of nonnegative integers of dimension
| P |, called transition vectors At,t" t:

Let N=(P,T,F,V,mo) aeS-Net, pec Pandte T.

V(t,p) ifp € tF, X-)_>©P

LY
t7(p) = 0 otherwise

—iv._ J Vipt) ifpeFt, .
t(p) = { 0 otherwise . OP 7D
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12. Petri-Nets

Place and transition vectors at work:

mm<m,if m(p) < m'(p) forVp € P,

mm<m,ifm<m, however m # m’.
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Place and transition vectors at work:

mm<m,if m(p) < m'(p) forVp € P,

mm<m,ifm<m, however m # m’.

m t is enabled at m iff t7 < m,

m[t=m' iff t= < mand m = m+ At.
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Reachability
Let N=(S,T,F,V,mp) a eS-Net.

We denote W/(T) the set of words with finite length over T; e € W(T) is called the
empty word.
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Reachability
Let N=(S,T,F,V,mp) a eS-Net.

We denote W/(T) the set of words with finite length over T; e € W(T) is called the
empty word.

The length of a word w € W(T) is given by /(w). We have /(e) = 0.
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Reachability
Let N=(S,T,F,V,mp) a eS-Net.

We denote W/(T) the set of words with finite length over T; e € W(T) is called the
empty word.

The length of a word w € W(T) is given by /(w). We have /(e) = 0.

Let m, m’" be markings of P and w € W(T). We define a relation m[w =m'’
inductively:

m mle-m' iff m=m, %’ W\[t>m'

mlette T,we W(T). mlwt=m'iff Im" : m{w=m", m"[t=m'.
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Reachability

Let@: (5, T,F,V,mp) a eS-Net.

We denote W/(T) the set of words with finite length over T; e € W(T) is called the
empty word.

The length of a word w € W(T) is given by /(w). We have /(e) = 0.

Let m, m’" be markings of P and w € W(T). We define a relation m[w =m'’
inductively:

m mle-m' iff m=m',

mlette T,we W(T). mlwt=m'iff Im" : m{w=m", m"[t=m'.
The reachability relation [ * >of @s defined by
m[*>=m" iff Iw : w € W(T), m[@m/;

m’ is reachable from m in N.
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12. Petri-Nets

m Ry(m) :={m’ | m[*>m'}, the set of markings reachable from m by N,
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m Ry(m) :={m’ | m[x>m'}, the set of markings reachable from m by N,
m Ly(m) :={w | 3Im': m[w>=m'}, the set of all words representing firing sequences
Ao TERES
of transitions of N starting a
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12. Petri-Nets

m Ry(m) :={m’ | m[*>m'}, the set of markings reachable from m by N,

m Ly(m):={w |3Im' : m{w>m'}, the set of all words representing firing sequences
of transitions of N starting at m,

m Aw =" At;, wobei w = tits ... ty.
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m Ry(m) :={m’ | m[*>m'}, the set of markings reachable from m by N,

m Ly(m):={w |3Im' : m{w>m'}, the set of all words representing firing sequences
of transitions of N starting at m,

m Aw =" At;, wobei w = tits ... ty.

Results
m [+ >is reflexiv and transitiv.
m mlw=m' = (m+ m*)[w=(m' + m*),Ym* € NAT!®I. (Monotonie)

B mws=m' = m =m+ Aw.
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Reachability graph

Let N= (P, T,F,V,mg) a eS-Net. The Reachability graph of N is a directed graph
EG(N) := (Rn(mo), Bn); Rn(mo) is the set of nodes and By is the set of annotated
edges as follows:

By = {(@i,@ | m, m' =@' €T, m[t-m'}.
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Exercise: Give the reachability graph of the following eS-Net:

S,
» t S3

+ 1
B &
RN(mO) = { (1’07 070)7(171707 0)7 (17 27 07 0)7(1737 07 0)’ M)
&2}_1&)? (07 17 1’ 0)’ (0’ 27 170)7 (07 3’ 170)7 ctt
w’-n’ (071717 1)7 (07 07172)7(07 27 171)7(07 17 17 2)7 (0707 17 3‘)7'..}

Ly(mo) = { 67@ tity, titity, ...,
b, tity, titito, tititity, .. .,
titats, tititats, tititatats, titititats, it tytatats, tititytatatsts, ...}
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Section 12.2 Control Patterns

m eS-nets can be used to model causal dependencies; for modelling temporal
aspects extensions of the formalism are required.

m Whenever between some transitions there are no causal dependencies, the
transitions are called concurrent; concurrency is a prerequisite for parallelism.
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12. Petri-Nets

Some typical causalities

Sequence

Iteration
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12. Petri-Nets

AND-join, OR-join, AND-split, OR-split

,"-/’ ) ')
"2/ anp-join AND - spiit 1

o D\(\ ) /D—‘V

o—" Npge—o

OR - join OR - split

Distributed Systems Part 2 ansactional Distributed S Prof. Dr. Peter Fiscl


fischerp
Bleistift


OR-Split with regulation

(o) ey '®)
\8) \8) L
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12. Petri-Nets

OR-Join with regulation
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A eS-Net with concurrency

Par End

Par Begin
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Section 12.3 Analysis

Boundedness
Let N= (P, T,F,V,m) be a eS-Net, m a marking, p € P.
m Let k € NAT™. pis called k-bounded, if for each marking m’ there holds:

m' € Ry(mo) = m'(p) < k.
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Section 12.3 Analysis

Boundedness
Let N= (P, T,F,V,m) be a eS-Net, m a marking, p € P.
m Let k € NAT™. pis called k-bounded, if for each marking m’ there holds:

m' € Ry(mo) = m'(p) < k.

m pis called bounded, if p k-bounded for some k € NAT .
m N is called bounded (k-bounded), if each place is bounded (k-bounded).
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Section 12.3 Analysis

Boundedness
Let N= (P, T,F,V,m) be a eS-Net, m a marking, p € P.
m Let k € NAT™. pis called k-bounded, if for each marking m’ there holds:

m' € Ry(mo) = m'(p) < k.

m pis called bounded, if p k-bounded for some k € NAT .
m N is called bounded (k-bounded), if each place is bounded (k-bounded).

m A eS-net is called safe, if it is 1-bounded. Places of a bounded net may be
interpreted as boolean conditions.
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12. Petri-Nets

Theorem
Let N= (P, T,F,V,mo) be a eS-Net. N is unbounded, i.e. not bounded, iff there
exist w € W(T), m,m’ € Ry(mo), such that m[w>=m’ and m’ > m.
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Theorem

Let N= (P, T,F,V,m) be a eS-Net. N is unbounded, i.e. not bounded, iff there
exist w € W(T), m,m’ € Ry(mo), such that m[w>=m’ and m’ > m.

Proof «
Let w € W(T), m,m’" € Ry(mo), such that m{w>m’ and m’ > m. It holds

mlws=m'[w=m"[w>=m"". ..,

where m<m' <m”" <m"” <...

Thus there must exist at least one unbounded place.
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To proof = we first proof:

Lemma

For each infinite sequence of markings (m;) of markings there exists an infinite
subsequencev (m}), which is weakly monotonic, i.e. | < k implies mj < mj.
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To proof = we first proof:

Lemma

For each infinite sequence of markings (m;) of markings there exists an infinite
subsequencev (m}), which is weakly monotonic, i.e. | < k implies mj < mj.

To prove the Lemma, first extract an infinite subsequence for which weak monotonicity holds
for the first components of its markings. Then extract from that subsequence an infinite
subsequence for which weak monotonicity holds for the second components of its markings,
etc.
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12. Petri-Nets

Proof =

m Consider the reachability graph EG(N), which has an infinite number of nodes. Starting
from mg there exist a directed path to each node of the graph. Because of the finite
number of transitions, each node has only a finite number of direct successors.
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Proof =

m Consider the reachability graph EG(N), which has an infinite number of nodes. Starting
from mg there exist a directed path to each node of the graph. Because of the finite
number of transitions, each node has only a finite number of direct successors.

m Thus, at mg there start an infinite number of paths without cycles, however only a finite
number of edges. Therefore, one of these edges must be part of infinitly many paths. Let
mo — my be one such edge.
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Proof =

m Consider the reachability graph EG(N), which has an infinite number of nodes. Starting
from mg there exist a directed path to each node of the graph. Because of the finite
number of transitions, each node has only a finite number of direct successors.

m Thus, at mg there start an infinite number of paths without cycles, however only a finite
number of edges. Therefore, one of these edges must be part of infinitly many paths. Let
mo — my be one such edge.

m The same argument can be applied w.r.t. m; such that we get mg — m; — my, where
my1 — mp is part of an infinite number of paths.
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Proof =

m Consider the reachability graph EG(N), which has an infinite number of nodes. Starting
from mg there exist a directed path to each node of the graph. Because of the finite
number of transitions, each node has only a finite number of direct successors.

m Thus, at mg there start an infinite number of paths without cycles, however only a finite
number of edges. Therefore, one of these edges must be part of infinitly many paths. Let
mo — my be one such edge.

m The same argument can be applied w.r.t. m; such that we get mg — m; — my, where
my1 — mp is part of an infinite number of paths.

m The above construction can be repeated infinitly many times. Therefore there exists an
infinite sequence of markings (m;) of pairwise distinct markings, such that my, my,
0 < k < I implies:
mo[*>—mk[*>—m,.
because of the Lemma there exists an infinite weakly monotonic subsequence (mJ’) von
(m;). Let mj, m} two successive elements. From construction we have mg[* >m/[*>m},
my < m), and even m; < mj.
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Reachability
Let N= (P, T,F,V,mg) be a eS-Net, m € NAT'P! a marking. The decision problem:

m € Ry(mo)?

is called reachability-problem.
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Reachability
Let N= (P, T,F,V,mg) be a eS-Net, m € NAT'P! a marking. The decision problem:

m € Ry(mo)?

is called reachability-problem.

The reachability problem is decidable, however even for bounded nets hyperexponential.
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Coverability
Let N= (P, T,F,V,mo) be a eS-Net and let m, m" be markings of N.
m If m < m’, then m" covers m, respectively, m is covered by m'.

m mis called coverable in N, if there exists a reachable marking m’ which covers m.
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Coverability
Let N= (P, T,F,V,mo) be a eS-Net and let m, m’ be markings of N.
m If m < m’, then m" covers m, respectively, m is covered by m'.
m mis called coverable in N, if there exists a reachable marking m’ which covers m.

Consequence: Whenever a marking is not coverable w.r.t. some eS-Net N, it is not
reachable in N.

a = (4\010\
'"'\'/R\\ / h3
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Coverability
Let N= (P, T,F,V,mo) be a eS-Net and let m, m" be markings of N.
m If m < m’, then m" covers m, respectively, m is covered by m'.
m mis called coverable in N, if there exists a reachable marking m’ which covers m.

Consequence: Whenever a marking is not coverable w.r.t. some eS-Net N, it is not
reachable in N.

Give examples.
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Coverability Graph

Let N=(P,T,F,V,mo) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R, B) as follows:
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Coverability Graph

Let N=(P,T,F,V,mo) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R, B) as follows:
m inductive definition of an auxiliary tree T(N):

The values of the nodes in T(N) are arkings of N. The value of the root
node r is mg. Let m be the value of some node n of T(N), t € T, and m[t>m’.
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Coverability Graph

Let N=(P,T,F,V,mo) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R, B) as follows:
m inductive definition of an auxiliary tree T(N):
The values of the nodes in T(N) are w-markings of N. The value of the root
node r is mg. Let m be the value of some node n of T(N), t € T, and m[t>m’.

m Whenever on the path from the root r to n there exists a node n’’ with value m’’
such that m"”” < m’, then update m’ by m’(s) := w for all places p with
m’(p) < m'(p).
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Coverability Graph

Let N=(P,T,F,V,mo) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R, B) as follows:

m inductive definition of an auxiliary tree T(N):

The values of the nodes in T(N) are w-markings of N. The value of the root
node r is mg. Let m be the value of some node n of T(N), t € T, and m[t>m’.

m Whenever on the path from the root r to n there exists a node n’’ with value m’’
such that m"”” < m’, then update m’ by m’(s) := w for all places p with
m’(p) < m'(p).
B Introduce a new successor node n’ of n with value m’ and mark the edge from n to
7
n’ by t.
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Coverability Graph

Let N=(P,T,F,V,mo) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R, B) as follows:

m inductive definition of an auxiliary tree T(N):

The values of the nodes in T(N) are w-markings of N. The value of the root
node r is mg. Let m be the value of some node n of T(N), t € T, and m[t>m’.

m Whenever on the path from the root r to n there exists a node n’’ with value m’’
such that m"”” < m’, then update m’ by m’(s) := w for all places p with
m’(p) < m'(p).

B Introduce a new successor node n’ of n with value m’ and mark the edge from n to
n’ by t.

B If there already exists another node in the tree with the same value m’, node n’ is
not considered any further.
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Coverability Graph

Let N=(P,T,F,V,mo) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R, B) as follows:

m inductive definition of an auxiliary tree T(N):

The values of the nodes in T(N) are w-markings of N. The value of the root
node r is mg. Let m be the value of some node n of T(N), t € T, and m[t>m’.

m Whenever on the path from the root r to n there exists a node n’’ with value m’’
such that m"”” < m’, then update m’ by m’(s) := w for all places p with
m’(p) < m'(p).

B Introduce a new successor node n’ of n with value m’ and mark the edge from n to
n’ by t.

B If there already exists another node in the tree with the same value m’, node n’ is
not considered any further.

m A coverability graph is derived from a coverability tree by taking the values of the
nodes in the tree as nodes in the graph.
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12. Petri-Nets

Give a coverability tree.
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12. Petri-Nets e

A eS-net with two different coverability graphs.
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Two eS-Nets with identical coverability graphs.

—\ /_“7:| ’ (Q)/

Prof. Dr. Peter Fischer

Transactional Distributed Systems

Distributed Systems Part 2


fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift

fischerp
Bleistift


Theorem
The coverability graph CG(N) = (R, B) of a eS-net N is finite.

Proof:

Assume CG(N) is not finite. Then it contains an infinite number of nodes. Thus there
exists an infinite, weakly monotonic sequence of w-markings, i.e. values of the nodes in
the tree. Because of the construction of the auxiliary tree T(N), such an infinite
sequence cannot exist, as we can introduce w only a finite number of times.
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12. Petri-Nets

To test the reachability of a certain marking we may first test its coverability and then
try to find a firing sequence which confirms its reachability.
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To test the reachability of a certain marking we may first test its coverability and then
try to find a firing sequence which confirms its reachability.

Is marking m = (0, 3, 1, 3) reachable?
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To test the reachability of a certain marking we may first test its coverability and then
try to find a firing sequence which confirms its reachability.

Is marking m = (0, 3, 1, 3) reachable?
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Live, dead and deadlockfree
Let N=(P,T,F,V,mg) a eS-Net.
m A marking m is called dead in N, if there is no t € T which is enabled at m.

m A transition t is called dead at marking m, if there is no marking reachable from
m, such that t is enabled.

If t dead at myg, then t is called dead in .
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Live, dead and deadlockfree
Let N=(P,T,F,V,mg) a eS-Net.

m A marking m is called dead in N, if there is no t € T which is enabled at m.

A transition t is called dead at marking m, if there is no marking reachable from
m, such that t is enabled.

If t dead at myg, then t is called dead in .

m A transition t is called /ive at marking m, if for any reachable marking from m it
holds that t is not dead.
If m = my, then t is called live in N.

m A marking m is called live in N if all transitionen t € T are livein m. If m = mg
then N is called live.
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Live, dead and deadlockfree
Let N=(P,T,F,V,mg) a eS-Net.

m A marking m is called dead in N, if there is no t € T which is enabled at m.

A transition t is called dead at marking m, if there is no marking reachable from
m, such that t is enabled.
If t dead at mo, then t is called dead in N.

m A transition t is called /ive at marking m, if for any reachable marking from m it
holds that t is not dead.
If m = my, then t is called live in N.

m A marking m is called live in N if all transitionen t € T are livein m. If m = mg
then N is called live.

m N is called deadlockfree, if no dead marking is reachable.
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Live, dead and deadlockfree
Let N=(P,T,F,V,mg) a eS-Net.

m A marking m is called dead in N, if there is no t € T which is enabled at m.

A transition t is called dead at marking m, if there is no marking reachable from
m, such that t is enabled.
If t dead at mo, then t is called dead in N.

m A transition t is called /ive at marking m, if for any reachable marking from m it
holds that t is not dead.
If m = my, then t is called live in N.

m A marking m is called live in N if all transitionen t € T are livein m. If m = mg
then N is called live.

m N is called deadlockfree, if no dead marking is reachable.

Note: whenever a transition is dead at some m, then it is not live at m.

However, the other direction does not hold.
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Firing the word tstit results in a dead marking (0,0). The coverability graph does not

indicate this!
|\ (1,0)
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Lifeness cannnot be tested by inspection of the coverability graph.
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