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Section 12.4 Invariants

Basics

A Petri-net invariant is a property of a Petri-net, which holds for any marking,
respectively transition word, of the net.

We study place- and transition-invariants, which are based on a matrix
representation of a net, respectively vector representation of markings and
transitions.

Incidence Matrix

Let N = (P,T ,F ,V ,m0) a eS-Net, T = {t1, . . . , tn}, P = {p1, . . . , pm},
n,m ≥ 1.

A vector of dimension n (m) is called T - (P-)vector.

For any t ∈ T , ∆t can be represented as a column P-vector.

The incidence matrix of N is given as a m × n-matrix C = (∆t1, . . . ,∆tn),
respectively C = (ci,j)1≤i≤m,1≤j≤n, where cij := ∆tj(si ).
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Example
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Incidence matrices are independent of concrete markings,

In case of loops, information concerning multiplicities is lost.

Parikh-Vektor

The transpose of a vector x , resp. matrix C is denoted by x>, bzw. C>.

The Parikh-Vektor q̄ of some q ∈W (T ) is a column T -vector, n =| T |, defined as
follows:

q̄ : T → NAT , where q̄(t) is the number of occurences of t in q.
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State Equation

Let q ∈W (T ) and m,m′ markings.

If m[ q�m′, then
∑
t∈T

(q̄(t) ·∆t) = C · q̄ = ∆q.

Moreover, as m[ q�m′, we have

m′ = m + ∆q>.

The equation:
m′ = m + (C · q̄)>

is called state equation.

The system of linear equations given by

C · x = (m′ −m)>

has an integer nonnegative solution x .
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however the following does not hold in general:

If C · x = (m′ −m)> has an integer nonnegative solution then

∃q ∈W (T ) : m[ q�m′,

I.e., the reachability problem cannot be solved, in general.

Example

Let m = (1, 0, 0), m′ = (0, 0, 1).
x = (0, 1, 1, 0)> is a solution for C · x = (m′ −m)>, however we cannot find a word
which can be fired at m.
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Theorem

Let N be a eS-Net and ∆ a P-vector. There exists a marking m∗ and a word
q ∈W (T ), such that m∗[ q�(m∗ + ∆), iff C · x = ∆> has an integer nonnegative
solution.

Proof:
”⇒”: trivial.

”⇐”: Let m∗ :=
∑
t∈T

x(t) · t−.
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Corollary

Let N = (P,T ,F ,V ,m0) be a eS-Net. There exists a marking m∗ such that
N = (P,T , F ,V ,m∗) unbounded, iff C · x > 0 has an integer nonnegative solution.

Useful application of the corollary:

If there does not exist an integer nonnegative solution for C · x > 0, then for any initial
marking, N is bounded.
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Transition-Invariants (T-Invariants)

Let N = (P,T ,F ,V ,m0) be a eS-Net.

Any nontrivial integer solution x of the homogenous linear equation system
C · x = 0 is called transition-invariant (T-invariant) of N.

A T-invariant x is called proper, if x ≥ 0.

A T-invariant x is called realizable in N, if there exists a word q ∈W (T ) with
q̄ = x and a reachable marking m such that m[ q�m.

N is called covered with T-invariants, if there exists a T-invariant x of N with all
components positive, i.e. greater than 0.

Proper T-invariants denote possible cycles of the reachability graph - realizable
T-invariants denote cycles which indeed may occur.
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Example

T-invariants of

are as follows:

x = λ1


1
1
2
0

+ λ2


0
0
0
1


where λ1, λ2 integers.
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Theorem

Let N = (S ,T ,F ,V ,m0) be a eS-Net. If there exists a marking m, such that N live
and bounded at m, then N covered by T-invariants.

Proof: Let N live and bounded at some m.

As N is live at m, there exists a word q1 ∈ LN(m), which contains all transitions in T and the
marking m + ∆q1 is reachable from m.

Moreover, N is live at m + ∆q1 as well. Therefore, there exits a word q2 ∈ LN(m), which
contains all transitions in T and N is live at the marking m + ∆q1q2.

There exists an infinite sequence of markings (mi ), where mi := m + ∆q1 . . . qi , such that:

m[ q1�m1[ q2�m2 . . .mi [ qi+1�mi+1 . . .

As N is bounded at m, there is only a finite number of markings which are reachable.
Therefore, there exist i , j ∈ NAT : i < j such that mi = mj . Thus

mi [ qi+1 . . . qj �mj = mi

As all these qi mention all transitions, we finally conclude

x = q̄i+1 + . . .+ q̄j

is a T-Invariant which covers N.
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Useful application of the theorem:

Whenever N is not covered by T-invariants, then for every marking it holds N not live
or not bounded.
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Place-Invariants (P-Invariants)

Let N = (P,T ,F ,V ,m0) be a eS-Net.

Any nontrivial integer solution y of the homogeneous linear equation system
y · C = 0 is called place-invariant (P-invariant) of N.

A P-invariant y is called proper P-invariant, if y ≥ 0.

N is called covered with P-invariants, if there exists a P-invariant y with all
components positive, i.e. greater than 0.

If y is a P-invariant, then for any marking m the sum of the number of tokens on the
places p is invariant with respect to the firing of the transitions weighted by y(p).
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Example

P-invariants of

are as follows:

yT = λ

 1
1
1


where λ an integer.
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Theorem

Let N = (P,T ,F ,V ,m0) a eS-Net and let y a P-invariant of N. Then:

m ∈ RN(m0)⇒ y ·m> = y ·m>0 .

Proof:
Assume m0[ q�m. Then m = m0 + (C · q̄)> and also:

y ·m> = y ·m>0 + y · (C · q̄) =

= y ·m>0 + (y · C) · q̄ = y ·m>0 + 0 · q̄ = y ·m>0 .
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Corollary:

Let y P-invariante of N, m marking.

y ·m> 6= y ·m>0 ⇒ m 6∈ RN(m0).

Let y proper P-invariant of N. Let p ∈ P such that y(p) > 0.

Then, for any initial marking, p is bounded.

Proof: y ·m>0 = y ·m> ≥ y(p) ·m(p) ≥ m(p).

Let N be covered by P-invariants. N is bounded for any initial marking.
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Note, the following net is bounded for any initial marking, however does not have a
P-invariant:

P-invariants allow sufficient tests for non-reachability and boundedeness.
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Example: Prove freedom from deadlocks.

C =



−1 −1 −1 1 1 1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0

0 −1 0 0 1 0
0 0 −1 0 0 1

 P-invariants:

Y1 = (0, 1, 0, 0, 1, 0, 0)

Y2 = (0, 0, 1, 0, 0, 1, 0)

Y3 = (0, 0, 0, 1, 0, 0, 1)

Y4 = (1, 1, 1, 1, 0, 0, 0)

Initial marking is given by m0 = (2, 0, 0, 0, 1, 1, 1). Assume there exist a dead marking m, m0[ q�m. Then
it must hold m(p1) = m(p2) = m(p3) = 0. Because of Y4 it follows m(p0) = 2. As m dead it follows
m(p4) = m(p5) = m(p6) = 0. However this contradicts Y1m0 = Y1m.
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Section 12.5 Place Capacities

Sometimes when modelling we would like to fix an upper bound for the number of
tokens in a place.

Let N = (P,T ,F ,V ,m0) be a eS-Net, c a ω-marking of P and let m0 ≤ c.
(N, c) is called eS-Net with capacities. c(p), p ∈ P is called capacity of p.

For eS-nets with capacities the notion of being enabled is adapted:

a transition t ∈ T is enabled at marking m, if t− ≤ m and
m + ∆t ≤ c.

Capacities graphically are labels of places - no label means capacity ω.
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Any eS-net with capacities can be simulated by a eS-Net without capacities.

Construction

Let p a palce with capacity k = c(p), k ≥ 1. Let pco be the complementary place
of p which is assigned the initial marking k −m0(p).

Whenever for a transition t we have ∆t(p) > 0, we introduce an arc from pco to
t with multiplicity ∆t(p);
whenever ∆t(p) < 0, we introduce an arc from t to pco with multiplicity −∆t(p).
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A eS-Net with capacities and its simulation by a bounded eS-Net.
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Section 12.6 S-Nets with Colors

eS-Nets in practice may become huge and difficult to understand.

Sometimes such nets exhibit certain regularities which give rise to questions how
to reduce the size of the net without losing modeling properties.
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What about a n-philosopher problem with n >> 3?

i 1
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i 2 i 3

g 1 g 2 g 3

Why not introduce tokens with individual information?
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Abstraction 5-philosopher problem

Note: the intention of the marking shown only is to demonstrate
”
individual“ tokens.

What about being enabled and firing?
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Colored System-Nets

A colored System-Net distinguishes different kinds of sorts for markings - the so called
colors - and functions over these sorts which are used to label the edges of the net.

Generalizing eS-Nets, in a colored net a transition will be called enabled, if certain
conditions are true, which are based on the functions which are assigned to the edges
of the transitions surrounding.

Thus, we have colors, to characterize markings (place colors), and colors, to
characterize the firing of transitions (transition colors).

As a marking of a place now can be built out of different kind of tokens, we introduce
multisets.

Let A be a set. A multiset m over A is given by a maping m : A→ NAT .

Let a ∈ A. If m[a] = k then there exist k occurences of a in m.

A multiset oftenly is written as a (formal) sum, e.g. [Apple,Apple,Pear ] is
written as 2 · Apple + 1 · Pear .
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A colored version of the 3-Philosopher-Problem

b e 
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g
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g3 RL
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i

b e 
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g1 

g2 

g3 RL

ID
i

Colors

C(g) = {g1, g2, g3}, C(i) = {ph1, ph2, ph3} place colors

C(b) = {ph1, ph2, ph3}, C(e) = {ph1, ph2, ph3} transition colors

Functions

ID(phj ) := 1 · phj , 1 ≤ j ≤ 3

RL(phj ) :=

{
1 · g1 + 1 · g3 if j = 1,
1 · gj−1 + 1 · gj if j ∈ {2, 3}.
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Multiplicities

A multiplicity assigned to an edge between a place p and a transition t is a mapping
from the set of transition colors of t into the set of multisets over the colors of p.

In the example:

V (b, i) = V (i , e) = ID, V (g , b) = V (e, g) = RL,

where:
ID(phj) := 1 · phj , 1 ≤ j ≤ 3

RL(phj) :=

{
1 · g1 + 1 · g3 if j = 1,
1 · gj−1 + 1 · gj if j ∈ {2, 3}.

ID denotes the identity mapping.

Marking

Markings are multisets over the respective place colors.

In the example:

m0(p) :=

{
1 · g1 + 1 · g2 + 1 · g3 if p = g ,
0 otherwise.
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A colored Net CN = (P,T ,F ,C ,V ,m0) is given by:

A net (P,T ,F ).

A mapping C which assignes to each x ∈ P ∪ T a finite nonempty set C(x) of
colors.

Mapping V assignes to each edge f ∈ F a mapping V (f ).

Let f be an edge connecting palce p and transition t.

V (f ) is a mapping from C(t) into the set of multisets over C(p).

m0 is the initial marking given by a mapping which assignes to each place p a
multiset m0(p) over C(p).
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Let CN = (P,T ,F ,C ,V ,m0) be a colored System-Net.

A marking m of P is mapping which assignes to each place p a multiset m(p)
over C(p).

A transition t is enabled in color d ∈ C(t) at m, if for all pre-places p ∈ Ft there
holds:

V (p, t)(d) ≤ m(p).

Assume t is enabled in color d at marking m. Firing of t in color d transforms m
to a marking m′:

m′(p) :=



m(p)− V (p, t)(d) + V (t, p)(d) if p ∈ Ft,
p ∈ tF ,

m(p)− V (p, t)(d) if p ∈ Ft,,
p 6∈ tF ,

m(p) + V (t, p)(d) if p 6∈ Ft,,
p ∈ tF ,

m(p) otherwise.
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Let CN = (P,T ,F ,C ,V ,m0) be a colored System-Net.
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Fold and Unfold of a Colored System-Net

Folding

By folding of a eS-Net we can reduce the number of places and transitions; places and
transitions are represented by appropriate place and transition colors, on which certain
functions defining the multiplicities are defined.

Let N = (P,T ,F ,V ,m0) a eS-Net. A folding is defined by π and τ :

π = {q1, . . . , qk} a (disjoint) partition of P,

τ = {u1, . . . , un} a (disjoint) partition of T .
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Fold and Unfold of a Colored System-Net
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π = {q1, . . . , qk} a (disjoint) partition of P,

τ = {u1, . . . , un} a (disjoint) partition of T .

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Peter Fischer



12. Petri-Nets 12.6. S-Nets with Colors Page 162

Two special cases

Call GN(π, τ) := (P ′,T ′,F ′,C ′,V ′,m′0) the result of folding.

All elements of π, τ are one-elementary:

⇒ N and GN(π, τ) are isomorph,

π, τ contain only one element:

⇒ |P ′| = |T ′| = 1, ”the model is represented by the labellings”.
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3-Philosopher-Problem
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Folding π = {{g1, g2, g3}, {i1, i2, i3}}, τ = {{b1, b2, b3}, {e1, e2, e3}}.

Colors from folding:
C(g) = {g1, g2, g3},C(i) = {i1, i2, i3},C(b) = {b1, b2, b3},C(e) = {e1, e2, e3}

Multiplicities: ID,RL analogously to previous version.
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3-Philosopher-Problem?
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Given π = {q1, . . . , qk}, τ = {u1, . . . , un}.

The folding GN(π, τ) := (P ′,T ′,F ′,C ′,V ′,m′0) of N is defined as follows:

P′ := {p′1, . . . , p′k}; T
′ := {t′1, . . . , t′n},

C ′(p′i ) = qi für i = 1, . . . , k; C ′(t′j ) = uj für j = 1, . . . , n,

F ′ := {(p′, t′) | C ′(p′)× C ′(t′) ∩ F 6= ∅} ∪
{(t′, p′) | C ′(t′)× C ′(p′) ∩ F 6= ∅},

f ′ = (p′, t′) ∈ F ′: V ′(f ′) is defined (t ∈ C ′(t′)):

V ′(f ′)(t) =
∑

p∈C ′(p′)
t−(p) · p,

f ′ = (t′, p′) ∈ F ′: V ′(f ′) is defined (t ∈ C ′(t′)):

V ′(f ′)(t) =
∑

p∈C ′(p′)
t+(p) · p,

m′0(p′) :=
∑

p∈C ′(p′)
m0(p) · p.
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Unfolding

Let GN = (P,T ,F ,C ,V ,m0) a CN-Net.

The Unfolding of GN is a eS-Net GN∗ := (P∗,T ∗, F ∗,V ∗,m∗0 ) given as follows:

P∗ := {(p, c) | p ∈ P, c ∈ C(p)},
T ∗ := {(t, d) | t ∈ T , d ∈ C(t)},

F ∗ := {((p, c), (t, d)) | (p, t) ∈ F ,V (p, t)(d)[c] > 0} ∪
{((t, d), (p, c)) | (t, p) ∈ F ,V (t, p)(d)[p] > 0}.

V ∗((p, c), (t, d)) := V (p, t)(d)[c],

V ∗((t, d), (p, c)) := V (t, p)(d)[c],

m∗0 (p, c) := m0(p)[c].
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Definition

Let E be a certain property of a net, e.g. boundedness, liveness, or reachability.

A CS-Net GN has property E , whenever its unfolding GN∗ has property E .

Analysis of colored System Nets

Analyse unfolding:

Advantage: Methods exist,
Pitfall: Unfoldings may be huge eS-Nets.

Analyse colored net:

Reachability graph and coverability graph can be defined in analogous way
to eS-Nets.
There exists a theory for invariants, as well.
Tools for simulation and analysis are available.
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Section 12.7 Workflow-Nets

Literature:

van der Aalst, Hofstede: http://is.tm.tue.nl/staff/wvdaalst/publications/p174.pdf

Workflow (WF)-Net

A eS-Net N = (P,T ,F ) is a WF-Net, if

There exists an input-place i ∈ P where Fi = ∅.
There exists an output-place o ∈ P where oF = ∅.
In N, every x ∈ P ∪ T is contained in a path from i to o.
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Example: WF-net order handling
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Properties of a WF-Net

Let N = (P,T ,F ) a WF-Net with input-place iand output-place o.

For p ∈ P there holds Fp 6= ∅ or p = i .

For p ∈ P there holds pF 6= ∅ or p = o.

Let N = (P,T ,F ), where P = P, T = T ∪ {t∗} and F = F ∪ {(o, t∗), (t∗, i).

N is called the shortcut net of N.

N is strongly connected.
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Sound WF-Nets

A WF-Net is called sound, if the following holds.

Let mi be a initial marking, such that only the input place i is marked.
Let mo be a output marking, such that only the out-put place o is marked.

From every marking m, which is reachable from mi , marking mo is reachable.

mo is the only marking reachable from mi for which o is marked.

The WF-Net does not contain dead transitions.

Theorem

A WF-Net N is sound iff (N,mi ) is life and bounded.
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Lemma

A WF-Net N is sound, if (N,mi ) live and bounded.

Proof

As (N,mi ) live there exists for any reachable marking m (including mi ) a firing word
leading to a marking m′ such that t∗ is enabled. Therefore o is marked in m′.

Consider an arbitrary such marking m′ which is reachable from mi , i.e. m′ = m′′ + mo .
t∗ is enabled in m′. Thus marking m′′ + mi is reachable from mi . As (N,mi ) is
bounded we have m′′ = 0.
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Lemma

Whenever a WF-Net N is sound, then (N,mi ) is bounded.

Proof

We show (N,mi ) bounded.

Assume (N,mi ) is not bounded. Then there exist markings m1,m2, such that
mi [ ∗�m1, m1[ ∗�m2 and m2 > m1.

As N sound we have m1[ q�mo . Moreover, because of m2 > m1, there exists a
marking m with m2[ q�m and m > mo . This is a contradiction to N sound.

N sound and (N,mi ) bounded implies (N,mi ) bounded.
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Lemma

If a WF-Netz N is sound, then (N,mi ) is life.

Proof

As N sound, from any marking m′ which is reachable from mi , we can reach mo .

Therefore, from any m′, which is reachable in (N,mi ), we can reach mi . As N does
not have any dead transitions w.r.t. mi , it follows (N,mi ) is live.
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Excursus: Net-Classes

Let N = (P,T ,F ,V ,m0).

N is called Synchronization-Graph, if for each place p it holds | Fp | = | pF |= 1.

N is called Statemachine, if for each transition t it holds | Ft | = | tF | = 1.

N is called Free-Choice-Net (FC-Net), if t, t′ ∈ pF ⇒ Ft = {s} = Ft′.

N is called Extended-Free-Choice-Net (EFC-Net), if t, t′ ∈ pF ⇒ Ft = Ft′.
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A synchronization-graph is also a FC-Net.

A statemachine is also a FC-Net.

A FC-Net is also a EFC-Net.
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Synchronization-Graph

Statemachine

��
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FC-Net

FC-Net
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A not sound WF-Net; the WF-Net is free-choice

A WF-Net which is sound, however not free-choice
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Soundness of a WF-Net

A WF-Net, which is a FC-Net, can be checked for soundness in polynomial time.

... from practical experiences:

For modeling in practical applications FC-Nets are sufficient.
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Example: WF-Net order handling - make it free-choice!

Split send bill to send bill reminder and send bill receive payment; now reminder and

receive payment do not share a common input-place.
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