

Georges-Köhler Allee, Geb. 51 D-79110 Freiburg peter.fischer@informatik.uni-freiburg.de

Exercises Distributed Systemes: Part 2 Summer Term 2014 29.6.2012

5. Exercise sheet: Distributed Concurrency Control and Recovery

Exercise 1

Consider the following local schedules:

- $S_1: R_1A \quad W_1A \quad R_2A \quad W_2A \\ S_2: R_2B \quad W_2B \quad R_1B \quad W_1B$
- $S_1: R_1A W_2A$
- $S_2: R_3B \quad W_1B \quad R_2C \quad W_3C$
- $S_1: R_1A \quad R_3A \quad R_3B \quad W_3A \quad W_3B \quad R_2B$ $S_2: R_4D \quad W_4D \quad R_1D \quad R_2C \quad R_4C \quad W_4C$
- (1) Verify whether or not the schedules are serializable.
- (2) Demonstrate that by applying Distributed 2PL (Timestamp Protocol) the non-serializable schedules could not have occured.
- (3) Check whether or not the schedules are rigourous and commit-deferred.
- (4) Demonstrate that by applying a Ticket-based concurrency control the not serializable schedules could not have occured.

Exercise 2

Think about a distributed database management system that runs 2PC and how it deals with failures

- (a) What happens when a participant votes abort in phase 1? Use the state transition graphs shown in the slides to explain your answer.
- (b) What happens when a participant fails in phase 2 without sending anything to the coordinator (e.g. a kernel freeze)? Again use the state transition graphs to further explain your answer.
- (c) How would using 3PC change the situation of b)

Exercise 3

- (a) Describe the communication topology of centralized, decentralized and linear 2PC.
- (b) Give the state diagrams of decentralized 2PC, in analogy to the state diagramm of centralized 2PC.

Exercise 4

Characterize centralized 2PC and linear 2PC with respect to

- (1) message and time complexity,
- (2) possibilities of processes to become uncertain.