

Energy Informatics 03 Network Algorithms

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

CoNe Freiburg

Graph Theory in a Nutshell

- A graph G=(V,E)
 - nodes/vertices V
 - edges E
 - connecting two nodes
- Variants
 - undirected/directed edge= lines/arrows
 - loops
 - edge connecting the node with itself
 - node/edge weights
 - mapping of numbers to the nodes/edges

How dead ends undermine power grid stability Peter J. Menck, Jobst Heitzig, Jürgen Kurths & Hans Joachim Schellnhuber Nature Communications 5, Article number: 3969

Terms in Graphs

- Degree of a node
 - number of edges at a node u
- Regular graph
 - if the maximum degree = minimum degree in a graph
- Indegree/Out-degree
 - in case of directed graph (digraph), the number of edges pointing to/from a node u
- Two nodes u,v are adjacent
 - If they are connected via an edge
- A graph is simple, if there are no loops or no parallel edges
 - usually only simple graphs are considered

- A sequence of adjacent nodes is called a path
- Paths with same start and end are called cycles
- The length of a path is the number of edges passed
- A path is simple if no edge occurs twice
 - it is elementary if no node occurs twice

Shortest Paths

- Given
 - a graph G=(V,E)
 - start node s, target node t
- Compute the shortest path
- Dijkstras algorihm
 - Start with set S={s}
 - In each round
 - add the node u of the neighborhood of S
 - which has the shortest distance to s
 - store the edge used to u

Connectivity

- An undirected graph is connected
 - If for all nodes u,v there exists a path connecting u and v

A directed graph is weakly connected

- If the corresponding undirected graph is connected
- A directed graph is strongly connected
 - if for all nodes u,v there exists a directed path connecting u and v
- A graph is k-(vertex)-connected, if there are k node disjoint paths between all nodes
- analog definition for d edge connected

Special Graphs

- Complete (simple) undirected graphs
 - no. of edges is n(n-1)/2

- Trees are connected undirected graphs without cycles
 - sets of graphs are called forests

DAG: Directed Acyclic Graph

Directed acyclic graph

- Topologic Sorting
 - mapping f of {1,...,n} to V such that for edge (u,v)

f(u) < f(v)

Flows in Networks

- Motivation
 - Optimize flow from source to target
- Definition:
 - (Single-commodity) maximum flow problem
 - Given
 - a graph G=(V,E)
 - a capacity function w: $E \rightarrow R_{0}^{+}$,
 - source set S and target set T
 - Find a maximum flow from S to T
- A flow is a function $f : E \rightarrow R_0^+$ such that
 - for all $e \in E$: $f(e) \le w(e)$
 - for all $e \notin E$: f(e) = 0 $\forall u \in V \setminus$
 - for all $u, v \in V$: $f(u, v) \ge 0$

Maximize flow

$$\sum_{u \in S} \sum_{v \in V} f(u, v)$$

 $\forall u \in V \setminus (S \cup T) \qquad \sum f(v, u) = \sum f(u, v)$

Flows in Networks

Computation of the Maximum Flow

- Every natural pipe system solves the maximum flow problem
- Algorithms
 - Linear Programming
 - for real numbers
 - the flow is described by equations of a linear optimization problem
 - Simplex algorithm (or Ellipsoid method) can solve any linear equation system
 - Ford-Fulkerson
 - also for integers
 - as long as open paths exist, increase the flow on theses paths
 - open path: path which increases the flow
 - Edmonds-Karp
 - special case of Ford-Fulkerson
 - use BFS (breadth first search) to find open paths

Ford-Fulkerson

- Find a path from the source node to the target node
 - where the capacity is not fully utilized
 - or which reduces the existing flow
- Compute the maximum flow on this augmenting path
 - by the minimum of the flow that can be added on all paths
- Add the flow on the path to the existing flow
- Repeat this step until no flow can be added anymore

Edmunds-Karp

- Search path for Ford-Fulkerson algorithm
- Choose the shortest augmenting path
 - Computation by breadth-first-search
- Ieads to run-time O(|V| |E|²)
 - whereas Ford-Fulkerson could have exponential run-time

Minimum Cut in Networks

- Motivation
 - Find bottleneck in networks
- Definition
 - Min Cut problem
 - Given
 - graph G=(V,E)
 - capacity function w: $E \rightarrow R+0$,
 - sources S and targets T
 - Find minimum cut between S and T
- A cut C is a set of edges
 - such that every path from a node of S to a node of T, contains an edge of C
- The size of a cut is

w(e) $e \in C$

Min-Cut-Max-Flow Theorem

- Theorem
 - The minimum cut equals the maximum flow
- Algorithms for minimum cut
 - can be obtained from the maximum flow algorithms

Energy Informatics 03 Network Algorithms

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg