
Energy Informatics
03 Network Algorithms

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

Graph Theory in a Nutshell

! A graph G=(V,E)
- nodes/vertices V
- edges E

• connecting two nodes

! Variants
- undirected/directed edge

= lines/arrows
- loops

• edge connecting the node
with itself

- node/edge weights
• mapping of numbers to

the nodes/edges

2

How dead ends undermine power grid stability
Peter J. Menck, Jobst Heitzig, Jürgen Kurths & Hans Joachim Schellnhuber
Nature Communications 5, Article number: 3969

Terms in Graphs

! Degree of a node
! number of edges at a node u

! Regular graph
! if the maximum degree = minimum

degree in a graph
! Indegree/Out-degree

! in case of directed graph (digraph), the
number of edges pointing to/from a node
u

! Two nodes u,v are adjacent
! if they are connected via an edge

! A graph is simple, if there are no loops or no
parallel edges
! usually only simple graphs are considered

3

1

5

2

34

1

5

2

34

Paths

! A sequence of
adjacent nodes is
called a path

! Paths with same
start and end are
called cycles

! The length of a path
is the number of
edges passed

! A path is simple if no
edge occurs twice
! it is elementary if no

node occurs twice

4

v0

r1

v1 v2 v3

r2 r3

v0 v1 v2 v3

e1 e2 e3

path of length 3 path of length 3

v0 r1
v1 v2

v3

r2

r3r4

cycle of length 4
v0 v1 v2

v3

cycle of length 4

e1 e2

e3e4

walk
simple path

1
2

3
4

trail
elementary path

1

2

34

Shortest Paths

! Given
! a graph G=(V,E)
! start node s, target node t

! Compute the shortest path
! Dijkstras algorihm

! Start with set S={s}
! In each round

! add the node u of the
neighborhood of S
! which has the shortest

distance to s
! store the edge used to u

5

S

1 63

1 1

1

S

1

1 63

1 1

1

S

21

1 63

1 1

1

S

21 3

1 63

1 1

1

S

21 3

1 63

1 1

3

1

(1) (2)

(3) (4)

(5)

Connectivity

! An undirected graph is connected
! if for all nodes u,v there exists a

path connecting u and v
!A directed graph is weakly

connected
! if the corresponding undirected

graph is connected
!A directed graph is strongly

connected
! if for all nodes u,v there exists a

directed path connecting u and v
!A graph is k-(vertex)-connected, if

there are k node disjoint paths
between all nodes

!analog definition for d edge
connected

6

Special Graphs

! Complete (simple) undirected graphs
! no. of edges is n(n-1)/2

! Trees are connected undirected graphs without cycles
! sets of graphs are called forests

7

K1 K2 K3 K4 K5

root r

leaves

leaf

! Directed acyclic graph

! Topologic Sorting
! mapping f of {1,..,n} to V

such that for edge (u,v)
! f(u) < f(v)

DAG: Directed Acyclic Graph

8

1

2 3

4

5

5

6

7

8

Flows in Networks

! Motivation
- Optimize flow from source to target

! Definition:
- (Single-commodity) maximum flow problem
- Given

• a graph G=(V,E)
• a capacity function w:E→R+

0,
• source set S and target set T

- Find a maximum flow from S to T 
! A flow is a function f : E → R0

+ such that
- for all e ∈ E: f(e) ≤ w(e)
- for all e ∉ E: f(e) = 0
- for all u,v ∈ V: f(u,v)≥0

! Maximize flow

9

7

2

5 3
1

1

3

2

4

2

1

3

3

4

S

T

Flows in Networks

10

7

2

5 3
1

1

3

2

4

2

1

3

3

4

1
1

1

1

1

7

2

5 3

1

1

3

2

4

2

1

3

3

4

1
1

1

1
1

1

1

1

1

7

2

5 3

1

1

3

2

4

2

1

3

3

4

1
1

1

1

1

1

1

Computation of the Maximum Flow

! Every natural pipe system solves the maximum flow problem
! Algorithms

- Linear Programming
• for real numbers
• the flow is described by equations of a linear optimization problem
• Simplex algorithm (or Ellipsoid method) can solve any linear equation

system
- Ford-Fulkerson

• also for integers
• as long as open paths exist, increase 

the flow on theses paths
- open path: path which increases the flow

- Edmonds-Karp
• special case of Ford-Fulkerson
• use BFS (breadth first search) to find open paths

11

7

2

5 3
1

1

3

2
4

2
1

3

3

4

2

1

3

1 3

3

2

1

2

2

1 1

1

Ford-Fulkerson

! Find a path from the source
node to the target node

- where the capacity is not fully
utilized

- or which reduces the existing
flow

! Compute the maximum flow
on this augmenting path

- by the minimum of the flow
that can be added on all paths

! Add the flow on the path to
the existing flow

! Repeat this step until no
flow can be added anymore

1

1

3

2

4
1

1

1

12

1

1

3

2

4

1

1

1

1

1

1

1

1

3

2

4

1

1

1

1

Edmunds-Karp

! Search path for Ford-Fulkerson algorithm
! Choose the shortest augmenting path

- Computation by breadth-first-search
! leads to run-time O(|V| |E|2)

- whereas Ford-Fulkerson could have exponential run-time

13

Example

14

7

2

5 3
1

1

3

2

4

2

1

3

3

4

S

T

Example

15

7

2

5 3

1

1

3

2

4

2

1

3

3

4

1

1
1

Example

16

7

2

5 3

1

1

3

2

4

2

1

3

3

4

1

1
11

1
1

Example

17

7

2

5 3

1

1

3

2

4

2

1

3

3

4

2

1
1

1
1

2

2

2

Example

18

7

2

5 3

1

1

3

2

4

2

1

3

3

4

2

1

3

1
1

2

2
1

1

1

1

1

Example

19

7

2

5 3

1

1

3

2

4

2

1

3

3

4

2

1

3

1
2

3

2

1

1

1

Example

20

7

2

5 3

1

1

3

2

4

2

1

3

3

4

2

1

3

1
2

3

2

1 1

1

1 1

1

1

1

1

Example

21

7

2

5 3

1

1

3

2

4

2

1

3

3

4

2

1

3

1
3

3

2

1

2

2

1 1

1

Minimum Cut in Networks

! Motivation
- Find bottleneck in networks

! Definition
- Min Cut problem
- Given

• graph G=(V,E)
• capacity function w: E → R+0,
• sources S and targets T

- Find minimum cut between S and T

! A cut C is a set of edges
- such that every path from a node of S to  

a node of T, contains an edge of C

! The size of a cut is

22

7

2

5 3
1

1

3

2

4

2

1

3

3

4

8

7

2

5 3
1

1

3

2

4

2

1

3

3

4

S

T

Min-Cut-Max-Flow Theorem

! Theorem
- The minimum cut equals

the maximum flow

! Algorithms for
minimum cut
- can be obtained from the

maximum flow
algorithms

23

7

2

5 3

1

1

3

2

4

2

1

3

3

4

2

1

3

1
3

3

2

1

2

2

1 1

1

7

2

5 3
1

1

3

2

4

2

1

3

3

4

6

Energy Informatics
03 Network Algorithms

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

