Energy Informatics
 03 Network Algorithms

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

$\underset{\text { cone }}{A}$
 Graph Theory in a Nutshell Freiburg

- A graph G=(V,E)
- nodes/vertices V
- edges E
- connecting two nodes
- Variants
- undirected/directed edge = lines/arrows
- loops
- edge connecting the node with itself
- node/edge weights
- mapping of numbers to the nodes/edges

How dead ends undermine power grid stability
Peter J. Menck, Jobst Heitzig, Jürgen Kurths \& Hans Joachim Schellnhuber Nature Communications 5, Article number: 3969

$\underset{\text { cove }}{A}$
 Terms in Graphs

- Degree of a node
- number of edges at a node u
- Regular graph
- if the maximum degree = minimum degree in a graph

- Indegree/Out-degree
- in case of directed graph (digraph), the number of edges pointing to/from a node u
- Two nodes u, v are adjacent
- if they are connected via an edge
- A graph is simple, if there are no loops or no
 parallel edges
- usually only simple graphs are considered
- A sequence of adjacent nodes is called a path
- Paths with same start and end are called cycles
- The length of a path is the number of edges passed
- A path is simple if no edge occurs twice
- it is elementary if no node occurs twice
path of length 3

cycle of length 4

path of length 3

cycle of length 4

trail

Shortest Paths

Given

- a graph G=(V,E)
- start node s, target node t
- Compute the shortest path
- Dijkstras algorihm
- Start with set S=\{s\}
- In each round
* add the node u of the neighborhood of S
- which has the shortest distance to s
- store the edge used to u

(3)

(4)

(5)

- An undirected graph is connected
- if for all nodes u, v there exists a path connecting u and v
- A directed graph is weakly connected
- if the corresponding undirected graph is connected
- A directed graph is strongly connected
- if for all nodes u, v there exists a directed path connecting u and v
- A graph is \mathbf{k}-(vertex)-connected, if there are k node disjoint paths between all nodes
analog definition for d edge connected

$\underset{\text { cone }}{A}$
 Special Graphs

Freiburg
Complete (simple) undirected graphs

- no. of edges is $\mathrm{n}(\mathrm{n}-1) / 2$

K_{3}

K_{4}

K_{5}
- Trees are connected undirected graphs without cycles
- sets of graphs are called forests

$\underset{\text { cone }}{A}$
 DAG: Directed Acyclic Graph Freiburg

- Directed acyclic graph

Topologic Sorting

- mapping fof $\{1, . ., n\}$ to V such that for edge (u,v)
- $\mathrm{f}(\mathrm{u})<\mathrm{f}(\mathrm{v})$

Flows in Networks

- Motivation
- Optimize flow from source to target Definition:
- (Single-commodity) maximum flow problem
- Given
a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
a capacity function $w: E \rightarrow R^{+}{ }_{0}$,

source set S and target set T
- Find a maximum flow from S to T
- A flow is a function $f: E \rightarrow R_{0}{ }^{+}$such that
- for all $e \in E: f(e) \leq w(e)$
- for all $e \notin E: f(e)=0$
$\forall u \in V \backslash(S \cup T)$

$$
\sum_{v \in V} f(v, u)=\sum_{v \in V} f(u, v)
$$

- for all $u, v \in V: f(u, v) \geq 0$
- Maximize flow

$$
\sum_{u \in S} \sum_{v \in V} f(u, v)
$$

A

Freiburg

- Every natural pipe system solves the maximum flow problem
- Algorithms
- Linear Programming
for real numbers
- the flow is described by equations of a linear optimization problem
- Simplex algorithm (or Ellipsoid method) can solve any linear equation system
- Ford-Fulkerson
- also for integers
as long as open paths exist, increase the flow on theses paths
- open path: path which increases the flow
- Edmonds-Karp
special case of Ford-Fulkerson

- use BFS (breadth first search) to find open paths

$\underset{\text { cond }}{A}$ Freiburg
 Ford-Fulkerson

- Find a path from the source node to the target node
- where the capacity is not fully utilized
- or which reduces the existing flow
Compute the maximum flow on this augmenting path
- by the minimum of the flow that can be added on all paths
- Add the flow on the path to the existing flow
Repeat this step until no flow can be added anymore

A

Edmunds-Karp

 FreiburgSearch path for Ford-Fulkerson algorithm

- Choose the shortest augmenting path
- Computation by breadth-first-search
- leads to run-time $\mathbf{O}\left(|\mathrm{V}||E|^{2}\right)$
- whereas Ford-Fulkerson could have exponential run-time
$\underset{\text { cone }}{\text { A }}$ Example

Freiburg

羅

$\underset{\text { cone }}{A}$

Freiburg

$\underset{\text { cone }}{A}$

Freiburg

$\underset{\text { cone }}{A}$

Freiburg

$-\frac{\text { 豪 }}{-3}$

$\underset{\text { cone }}{A}$

 Freiburg

$\underset{\text { cone }}{A}$

Freiburg

$\underset{\text { cone }}{A}$

Freiburg

$\underset{\text { cone }}{A}$

Freiburg

0
$-=\frac{9}{4}$
-4
$-\frac{9}{4}$

$\underset{\text { conve }}{A}$ Freiburg
 Minimum Cut in Networks

Motivation

- Find bottleneck in networks

Definition

- Min Cut problem
- Given
- graph G=(V,E)
- capacity function w: $E \rightarrow R+0$,
- sources S and targets T
- Find minimum cut between S and T
- A cut C is a set of edges
- such that every path from a node of S to a node of T , contains an edge of C
- The size of a cut is

$$
\sum_{e \in C} w(e)
$$

$\underset{\substack{\text { coie } \\ \text { Friburg }}}{\mathcal{A}}$ Min-Cut-Max-Flow Theorem
Theorem

- The minimum cut equals the maximum flow
- Algorithms for minimum cut
- can be obtained from the maximum flow algorithms

Energy Informatics
 03 Network Algorithms

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

