
Energy Informatics
System Design — Data Modeling

Albert-Ludwigs-Universität Freiburg

Peter Thiemann

08 Feb 2016



Who am I?

Thiemann Energy Informatics 08 Feb 2016 2 / 39



Who are you?

Thiemann Energy Informatics 08 Feb 2016 3 / 39



Data Modeling

UML class diagrams

Corresponding implementations

Using Python as a vehicle

Thiemann Energy Informatics 08 Feb 2016 4 / 39



Jumping into Python

From the python.org website

Python is an easy to learn, powerful programming language. It
has efficient high-level data structures and a simple but effective
approach to object-oriented programming. Python’s elegant
syntax and dynamic typing, together with its interpreted nature,
make it an ideal language for scripting and rapid application
development in many areas on most platforms.

What does that mean?

interpreted: you can work interactively as with a pocket
calculator

dynamic typing: your programs just run, you don’t have to
fight with the system

Thiemann Energy Informatics 08 Feb 2016 5 / 39



Jumping into Python

From the python.org website

Python is an easy to learn, powerful programming language. It
has efficient high-level data structures and a simple but effective
approach to object-oriented programming. Python’s elegant
syntax and dynamic typing, together with its interpreted nature,
make it an ideal language for scripting and rapid application
development in many areas on most platforms.

What does that mean?

interpreted: you can work interactively as with a pocket
calculator

dynamic typing: your programs just run, you don’t have to
fight with the system

Thiemann Energy Informatics 08 Feb 2016 5 / 39



Jumping into Python

From the python.org website

Python is an easy to learn, powerful programming language. It
has efficient high-level data structures and a simple but effective
approach to object-oriented programming. Python’s elegant
syntax and dynamic typing, together with its interpreted nature,
make it an ideal language for scripting and rapid application
development in many areas on most platforms.

What does that mean?

interpreted: you can work interactively as with a pocket
calculator

dynamic typing: your programs just run, you don’t have to
fight with the system

Thiemann Energy Informatics 08 Feb 2016 5 / 39



Jumping into Python

From the python.org website

Python is an easy to learn, powerful programming language. It
has efficient high-level data structures and a simple but effective
approach to object-oriented programming. Python’s elegant
syntax and dynamic typing, together with its interpreted nature,
make it an ideal language for scripting and rapid application
development in many areas on most platforms.

What does that mean?

interpreted: you can work interactively as with a pocket
calculator

dynamic typing: your programs just run, you don’t have to
fight with the system

Thiemann Energy Informatics 08 Feb 2016 5 / 39



Python as a calculator
Numbers: int, float

Syntactic elements

int(egers): 0, 1, -1, 42, -32768, . . .

float(ing point numbers): 1.0, 3.14159, .2288, -43.4 . . .

usual arithmetic operators: +, -, *, /

Talking to Python

>>> 2 + 2

4

>>> 50 - 5*6

20

>>> (50 - 5.0*6) / 4

5.0

>>> 8 / 5.0

1.6

Thiemann Energy Informatics 08 Feb 2016 6 / 39



Python as a calculator
Numbers: int, float

Syntactic elements

int(egers): 0, 1, -1, 42, -32768, . . .

float(ing point numbers): 1.0, 3.14159, .2288, -43.4 . . .

usual arithmetic operators: +, -, *, /

Talking to Python

>>> 2 + 2

4

>>> 50 - 5*6

20

>>> (50 - 5.0*6) / 4

5.0

>>> 8 / 5.0

1.6

Thiemann Energy Informatics 08 Feb 2016 6 / 39



Python as a calculator
Strings

Syntactic elements

"a string"

’Monty Python\’s flying circus’

Operations: concatenation, indexing

Talking to Python

>>> ’Monty Python\’s flying circus ’

"Monty Python ’s flying circus"

>>> ’Monty ’ ’Python ’ # concatenation

’Monty Python ’

>>> ’Monty ’ + ’ ’ + ’Python ’ # concatenation

’Monty Python ’

>>> ’Monty Python ’[4] # index starts at 0

’y’

Thiemann Energy Informatics 08 Feb 2016 7 / 39



Python as a calculator
Strings

Syntactic elements

"a string"

’Monty Python\’s flying circus’

Operations: concatenation, indexing

Talking to Python

>>> ’Monty Python\’s flying circus ’

"Monty Python ’s flying circus"

>>> ’Monty ’ ’Python ’ # concatenation

’Monty Python ’

>>> ’Monty ’ + ’ ’ + ’Python ’ # concatenation

’Monty Python ’

>>> ’Monty Python ’[4] # index starts at 0

’y’

Thiemann Energy Informatics 08 Feb 2016 7 / 39



Python as a calculator
Variables

Syntactic elements

variable names: x, y, tissue, one_of, . . .

assignment: x = 1, y = 43.2, tissue = ’tempo’

Talking to Python

>>> width = 42

>>> width

42

>>> width * 2

84

>>> height

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

NameError: name ’height ’ is not defined

Thiemann Energy Informatics 08 Feb 2016 8 / 39



Python as a calculator
Variables

Syntactic elements

variable names: x, y, tissue, one_of, . . .

assignment: x = 1, y = 43.2, tissue = ’tempo’

Talking to Python

>>> width = 42

>>> width

42

>>> width * 2

84

>>> height

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

NameError: name ’height ’ is not defined

Thiemann Energy Informatics 08 Feb 2016 8 / 39



Python as a calculator
Lists

Syntactic elements

empty list: []

enumerated lists:
[1, 3, 5, 7, 9], [’a’, ’e’, ’i’, ’o’, ’u’]

operations: index and concatenation (like string)

Talking to Python

>>> primes = [2, 3, 5, 7, 11]

>>> primes

[2, 3, 5, 7, 11]

>>> primes [3]

7

>>> primes + [13, 17, 19]

[2, 3, 5, 7, 11, 13, 17, 19]

Thiemann Energy Informatics 08 Feb 2016 9 / 39



Python as a calculator
Lists

Syntactic elements

empty list: []

enumerated lists:
[1, 3, 5, 7, 9], [’a’, ’e’, ’i’, ’o’, ’u’]

operations: index and concatenation (like string)

Talking to Python

>>> primes = [2, 3, 5, 7, 11]

>>> primes

[2, 3, 5, 7, 11]

>>> primes [3]

7

>>> primes + [13, 17, 19]

[2, 3, 5, 7, 11, 13, 17, 19]

Thiemann Energy Informatics 08 Feb 2016 9 / 39



Functions
Define your own functions

Double the input

>>> def double(n): # define function named ’double ’

... return 2*n # return value of expression

...

>>> double (21)

42

>>> double ("la") # oops

’lala ’

Thiemann Energy Informatics 08 Feb 2016 10 / 39



Temperature

Gauging the temperature of a drink

We want to gauge the temperature of (hot) coffee. The optimal
drinking temperature is between 50 and 60 degrees centigrade.

Python implementation

>>> def coffee_drinkable(temp):

... return 50 <= temp <= 60

... # returns a boolean , True or False

...

>>> coffee_drinkable (10)

False

>>> coffee_drinkable (100)

False

>>> coffee_drinkable (55)

True

Thiemann Energy Informatics 08 Feb 2016 11 / 39



Temperature

Gauging the temperature of a drink

We want to gauge the temperature of (hot) coffee. The optimal
drinking temperature is between 50 and 60 degrees centigrade.

Python implementation

>>> def coffee_drinkable(temp):

... return 50 <= temp <= 60

... # returns a boolean , True or False

...

>>> coffee_drinkable (10)

False

>>> coffee_drinkable (100)

False

>>> coffee_drinkable (55)

True

Thiemann Energy Informatics 08 Feb 2016 11 / 39



More discerning temperature check

Coffee temperature

Given the temperature in a cup of coffee, return “too hot” if the
temperature exceeds 60 degrees, “just right” if the temperature is
between 50 and 60 degrees, and “too cold” if it is below 50.

Conditional

Solving this task requires a conditional.

Thiemann Energy Informatics 08 Feb 2016 12 / 39



More discerning temperature check

Coffee temperature

Given the temperature in a cup of coffee, return “too hot” if the
temperature exceeds 60 degrees, “just right” if the temperature is
between 50 and 60 degrees, and “too cold” if it is below 50.

Conditional

Solving this task requires a conditional.

Thiemann Energy Informatics 08 Feb 2016 12 / 39



Conditional for coffee judgment

>>> def coffee_judgment(temp):

... if temp < 50:

... return "too cold"

... if temp < 60:

... return "just right"

... else:

... return "too hot"

...

>>> coffee_judgment (45)

’too cold ’

>>> coffee_judgment (55)

’just right ’

>>> coffee_judgment (65)

’too hot ’

Thiemann Energy Informatics 08 Feb 2016 13 / 39



Functions
Solving a quadratic equation

Task: solve ax2 + bx + c = 0 using the quadratic formula

x =
−b ±

√
b2 − 4ac

2a

Implementation of quadratic formula

>>> import math

>>> def midnight(a, b, c):

... return (-b + math.sqrt(b*b - 4*a*c))/2/a

...

>>> midnight (1,0,-1)

1.0

Looks good! 1.0 is a root of x2 − 1 = (x + 1)(x − 1)

Thiemann Energy Informatics 08 Feb 2016 14 / 39



Functions
Improving the implementation

but what about the other root −1.0 of x2 − 1?

we could return a list of roots!

Revised implementation of quadratic formula

>>> def midnight2(a, b, c):

... d = b*b - 4*a*c

... return [(-b + math.sqrt(d))/2/a,

... (-b - math.sqrt(d))/2/a]

...

>>> midnight2 (1,0,-1)

[1.0, -1.0]

Ok, got both now . . . are we done?

Thiemann Energy Informatics 08 Feb 2016 15 / 39



Functions
Improving the implementation

but what about the other root −1.0 of x2 − 1?

we could return a list of roots!

Revised implementation of quadratic formula

>>> def midnight2(a, b, c):

... d = b*b - 4*a*c

... return [(-b + math.sqrt(d))/2/a,

... (-b - math.sqrt(d))/2/a]

...

>>> midnight2 (1,0,-1)

[1.0, -1.0]

Ok, got both now . . . are we done?

Thiemann Energy Informatics 08 Feb 2016 15 / 39



Functions
Improving the implementation

but what about the other root −1.0 of x2 − 1?

we could return a list of roots!

Revised implementation of quadratic formula

>>> def midnight2(a, b, c):

... d = b*b - 4*a*c

... return [(-b + math.sqrt(d))/2/a,

... (-b - math.sqrt(d))/2/a]

...

>>> midnight2 (1,0,-1)

[1.0, -1.0]

Ok, got both now . . . are we done?

Thiemann Energy Informatics 08 Feb 2016 15 / 39



Functions
Improving the implementation

but what about the other root −1.0 of x2 − 1?

we could return a list of roots!

Revised implementation of quadratic formula

>>> def midnight2(a, b, c):

... d = b*b - 4*a*c

... return [(-b + math.sqrt(d))/2/a,

... (-b - math.sqrt(d))/2/a]

...

>>> midnight2 (1,0,-1)

[1.0, -1.0]

Ok, got both now . . . are we done?

Thiemann Energy Informatics 08 Feb 2016 15 / 39



Functions
Improving the implementation

Two further tests: x2 + 2x + 1 = 0 and x2 + 1 = 0

Testing the implementation

>>> midnight2 (1,2,1)

[-1.0, -1.0]

>>> # unsatisfactory. should return one value

>>> midnight2 (1,0,1)

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

File "<stdin >", line 3, in midnight2

ValueError: math domain error

>>> # oops! this one has no real roots!

Thiemann Energy Informatics 08 Feb 2016 16 / 39



Facts from mathematics

Consider equation E :

ax2 + bx + c = 0

Let d = b2 − 4ac

E has two distinct real solutions if d > 0

E has one real solution if d = 0

E has no real solutions if d < 0

We need to model this case distinction in the midnight function
using a conditional if, else.

Thiemann Energy Informatics 08 Feb 2016 17 / 39



Case distinction: if-else

Final implementation of quadratic formula

>>> def midnight3(a, b, c):

... d = b*b - 4*a*c

... if d < 0:

... return []

... elif d == 0:

... return [-b/2/a]

... else:

... return [(-b + math.sqrt(d))/2/a,

... (-b - math.sqrt(d))/2/a]

...

>>> midnight3 (1,0,-1)

[1.0, -1.0]

>>> midnight3 (1,2,1)

[-1]

>>> midnight3 (1,0,1)

[]

Thiemann Energy Informatics 08 Feb 2016 18 / 39



Functions
Check first letter

Task

Write a function check first that takes a string and a character
and checks whether it matches the first character of the string.

Solution

>>> def check_first(str , ch):

... return str [0] == ch

...

>>> check_first(’Larynx ’, ’L’)

True

>>> check_first(’atama ’, ’x’)

False

>>> check_first ([2,3,5], 2) # works for lists!

True

Thiemann Energy Informatics 08 Feb 2016 19 / 39



Functions
Check first letter

Task

Write a function check first that takes a string and a character
and checks whether it matches the first character of the string.

Solution

>>> def check_first(str , ch):

... return str [0] == ch

...

>>> check_first(’Larynx ’, ’L’)

True

>>> check_first(’atama ’, ’x’)

False

>>> check_first ([2,3,5], 2) # works for lists!

True

Thiemann Energy Informatics 08 Feb 2016 19 / 39



Functions
Count occurrences of letter

Task

Write a function count that takes a string and a character and
counts how often it occurs in the string.

Solution

>>> def count_element(str , ch):

... count = 0

... for c in str:

... if c == ch:

... count = count+1

... return count

...

>>> count_element(’atama ’, ’a’)

3

>>> count_element(’atama ’, ’x’)

0

Thiemann Energy Informatics 08 Feb 2016 20 / 39



Functions
Count occurrences of letter

Task

Write a function count that takes a string and a character and
counts how often it occurs in the string.

Solution

>>> def count_element(str , ch):

... count = 0

... for c in str:

... if c == ch:

... count = count+1

... return count

...

>>> count_element(’atama ’, ’a’)

3

>>> count_element(’atama ’, ’x’)

0

Thiemann Energy Informatics 08 Feb 2016 20 / 39



For loops

for c in str:

body

:

c must be a variable name

str stands for a list or a string (for example)

body and subsequent lines aligned with it are executed once
for each element (character) of str

the variable c contains the current character

Thiemann Energy Informatics 08 Feb 2016 21 / 39



Dictionaries

Special datatype in scripting languages

A dictionary stores an association between keys and values.

Strings and numbers can serve as keys (among others).

Talking to Python

>>> tel = { "gl": 8121, "cs": 8181 }

>>> tel["pt"] = 8051

>>> tel[’cs ’]

8181

>>> del tel[’cs ’]

>>> tel

{’gl ’: 8121, ’pt ’: 8051}

>>> tel[’cs ’]

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

KeyError: ’cs’

Thiemann Energy Informatics 08 Feb 2016 22 / 39



Dictionaries

Special datatype in scripting languages

A dictionary stores an association between keys and values.

Strings and numbers can serve as keys (among others).

Talking to Python

>>> tel = { "gl": 8121, "cs": 8181 }

>>> tel["pt"] = 8051

>>> tel[’cs ’]

8181

>>> del tel[’cs ’]

>>> tel

{’gl ’: 8121, ’pt ’: 8051}

>>> tel[’cs ’]

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

KeyError: ’cs’

Thiemann Energy Informatics 08 Feb 2016 22 / 39



Applcation of dictionaries

Task

Count all letters in a string.

Python source

def count_all_letters(s):

d = dict (); # empty dictionary

for c in s:

d[c] = d[c] + 1 if c in d else 1

return d

Example uses

>>> count_all_letters (" atama")

{’a’: 3, ’m’: 1, ’t’: 1}

>>> count_all_letters (" einnegermitgazellezagtimregennie ")

{’a’: 2, ’e’: 8, ’g’: 4, ’i’: 4, ’m’: 2, ’l’: 2, ’n’: 4, ’r’: 2, ’t’: 2, ’z’: 2}

Thiemann Energy Informatics 08 Feb 2016 23 / 39



Applcation of dictionaries

Task

Count all letters in a string.

Python source

def count_all_letters(s):

d = dict (); # empty dictionary

for c in s:

d[c] = d[c] + 1 if c in d else 1

return d

Example uses

>>> count_all_letters (" atama")

{’a’: 3, ’m’: 1, ’t’: 1}

>>> count_all_letters (" einnegermitgazellezagtimregennie ")

{’a’: 2, ’e’: 8, ’g’: 4, ’i’: 4, ’m’: 2, ’l’: 2, ’n’: 4, ’r’: 2, ’t’: 2, ’z’: 2}

Thiemann Energy Informatics 08 Feb 2016 23 / 39



Applcation of dictionaries

Task

Count all letters in a string.

Python source

def count_all_letters(s):

d = dict (); # empty dictionary

for c in s:

d[c] = d[c] + 1 if c in d else 1

return d

Example uses

>>> count_all_letters (" atama")

{’a’: 3, ’m’: 1, ’t’: 1}

>>> count_all_letters (" einnegermitgazellezagtimregennie ")

{’a’: 2, ’e’: 8, ’g’: 4, ’i’: 4, ’m’: 2, ’l’: 2, ’n’: 4, ’r’: 2, ’t’: 2, ’z’: 2}

Thiemann Energy Informatics 08 Feb 2016 23 / 39



Classes and Class Diagrams

Thiemann Energy Informatics 08 Feb 2016 24 / 39



Simple Classes

A class is similar to an entity. It describes compound data that
consists of subsidiary data (called attributes) collected in an
instance of the class. Additionally, it can describe operations on
that data (later).

Thiemann Energy Informatics 08 Feb 2016 25 / 39



Example for simple class: Tea

Class description for Tea

A tea shop describes a particular brand of tea in stock by its
name; a description of its color, flavor, etc; the weight in stock
(in g); and its price in cent per kg.

Thiemann Energy Informatics 08 Feb 2016 26 / 39



Example for simple class: Tea

Class description for Tea

A tea shop describes a particular brand of tea in stock by its
name; a description of its color, flavor, etc; the weight in stock
(in g); and its price in cent per kg.

Class diagram for Tea

Thiemann Energy Informatics 08 Feb 2016 27 / 39



Simple Classes in Python

A class diagram can be mapped line-by-line to (Python) code.

Class declaration

>>> class Tea:

... def __init__(self ,name ,desc ,wgt ,price):

... self.name = name

... self.description = desc

... self.weight = wgt

... self.price = price

...

__init__ is a function that is called, when a new Tea

instance is created. The self parameter is the new instance,
name, desc, wgt, and price are used to initialize the
respective attributes as shown.

Thiemann Energy Informatics 08 Feb 2016 28 / 39



Using simple classes

Creating and examining tea

>>> earl_grey = Tea("Earl Grey",

"Flavored black tea",

10000, 4335)

>>> earl_grey

<__main__.Tea instance at 0x1051dd950 >

>>> earl_grey.name # get name attribute

’Earl Grey ’

>>> earl_grey.price # get price attribute

4335

Tea() creates a new Tea instance and calls its __init__

method

Access attributes using
instance.attribute

Thiemann Energy Informatics 08 Feb 2016 29 / 39



Simple class with operation

Extended class description for Tea

A tea shop describes a particular brand of tea in stock by its
name; a description of its color, flavor, etc; the weight in stock
(in g); and its price in cent per kg. The shop wants to determine
the stock value. It also wants to be able to print an inventory line.

Two operations

stockPrice(): no parameters, return total value of the tea
brand in stock

inventoryLine(): no parameters, return a string for
printing the tea as an inventory item

Thiemann Energy Informatics 08 Feb 2016 30 / 39



Simple class with operation

Extended class description for Tea

A tea shop describes a particular brand of tea in stock by its
name; a description of its color, flavor, etc; the weight in stock
(in g); and its price in cent per kg. The shop wants to determine
the stock value. It also wants to be able to print an inventory line.

Two operations

stockPrice(): no parameters, return total value of the tea
brand in stock

inventoryLine(): no parameters, return a string for
printing the tea as an inventory item

Thiemann Energy Informatics 08 Feb 2016 30 / 39



Revised class diagram

The implementation of stockPrice and inventoryLine

belongs to the class declaration.

Their first parameter is self and they can access all
attributes.

Thiemann Energy Informatics 08 Feb 2016 31 / 39



Revised class declaration

class Tea:

# __init__ omitted (same as before)

def stockPrice(self):

return self.weight * self.price / 1000

def inventoryLine(self):

return (self.name + ’. ’ +

self.description + ’. ’ +

str(self.weight) + ’g. ’ +

str(self.price) + ’ c/kg.’)

Remarks

str() converts a number to a string

Thiemann Energy Informatics 08 Feb 2016 32 / 39



Meter Readings

Reading

A reading of a metering device consists of a reading date and a
reading value.

Class diagram

Thiemann Energy Informatics 08 Feb 2016 33 / 39



Meter Readings

Reading

A reading of a metering device consists of a reading date and a
reading value.

Class diagram

Thiemann Energy Informatics 08 Feb 2016 33 / 39



Meter Readings implemented

Explanation

datetime is a module that contains utilities for
manipulating dates

made available using
import datetime

Thiemann Energy Informatics 08 Feb 2016 34 / 39



Meter Readings implemented

Implementation

import datetime

class Reading:

def __init__(self , date , value):

self.date = date # datetime.date

self.value = value # float

def difference(self , previous ):

return self.value - previous.value

def yearly_prediction(self , previous ):

value_diff = self.value - previous.value

date_diff = self.date - previous.date

factor = 365.25 / date_diff.days

return value_diff * factor

Thiemann Energy Informatics 08 Feb 2016 35 / 39



Compound Classes

Household

A household has an allocated amount of space (in square meters)
and a number of occupants. Furthermore, a household has meter
readings for several dates in the past.

Class diagram

Thiemann Energy Informatics 08 Feb 2016 36 / 39



Compound Classes

Household

A household has an allocated amount of space (in square meters)
and a number of occupants. Furthermore, a household has meter
readings for several dates in the past.

Class diagram

Thiemann Energy Informatics 08 Feb 2016 36 / 39



Association: Household — Reading

The connection between Household and Reading in the
class diagram is an association.

It comes with a direction (arrow) that indicates the direction
in which it can be travesed.

We (choose to) represent the association with a list of
readings stored in the Household instance.

Requires a “housekeeping” method to add new readings.

Thiemann Energy Informatics 08 Feb 2016 37 / 39



Implementing Household

class Household:

def __init__(self , space , occupants ):

self.space = space

self.occupants = occupants

self.readings = []

def add_reading(self , reading ):

self.readings = [reading] + self.readings

Thiemann Energy Informatics 08 Feb 2016 38 / 39



Further Household Methods

Requirements

For a household, we want to be able to determine the number of
readings taken. If there are multiple readings, we want to give a
statistical yearly prediction.

Implementation

class Household: # __init__ ... as before

def nr_readings(self):

return len(self.readings)

def yearly_average(self):

if len(self.readings) < 2:

return None # more than one reading

first_reading = self.readings [-1]

last_reading = self.readings [0]

return last_reading.yearly_prediction(

first_reading)

Thiemann Energy Informatics 08 Feb 2016 39 / 39



End Part I

Thiemann Energy Informatics 08 Feb 2016 40 / 39


	Motivation
	Jumping into Python
	Functions
	Classes and Class Diagrams

