Energy Informatics

System Design - Data Analysis

Peter Thiemann

Second application
 Analysis of voting patterns

Second application

Voting data

The German Bundestag runs two kinds of voting procedures
■ anonymous vote
■ vote by role call

Second application

Voting data

The German Bundestag runs two kinds of voting procedures

- anonymous vote
- vote by role call

Vote by role call (namentliche Abstimmung)

■ for controversial topics

- the protocol registers votes along with the name of the voter
- procedure
- there are voting cards in three colors, blue, red, and white
- voting cards are imprinted with name and fraction
- cards are dropped in an urn
- outcome is published in a table

Second application: Statistic data on voting

Procedure

- For the vote by role call procedure, we can download the outcome of the votes for last few years
- Use this data to demonstrate the steps
- forming a hypothesis
- obtaining the data
- cleaning up the data
- verifying the hypothesis

Obtaining the data

Voting by role call

■ https://www.bundestag.de/abstimmung

- only accessible inside Germany
- only available in German
- Voting data from 2009-2016 in pdf and xls

■ https://www.bundestag.de/bundestag/plenum/ abstimmung/2016
■ https://www.bundestag.de/bundestag/plenum/ abstimmung/2015

- etc

Obtaining the data II

Two formats

■ pdf: unstructured - useless
https://www.bundestag.de/blob/404086/
029a3812d1a1a63979de77b48fbbabc2/20160128_
2-data.pdf
■ xls: structured - can load into spreadsheet program or read with Python
https://www.bundestag.de/blob/404080/
8d985dd7bac5ecff733d4b98d40a2c07/20160128_2_ xls-data.xls

A look through the spreadsheet

- Is this data valid?

■ What can go wrong?
■ Consistency?

Consistency check

■ Consider the columns
(ja, nein, Enthaltung, ungültig, nicht abgegeben)
that is: yes, no, abstain, invalid, not voted

- Each of them contains 0/1

■ Internal consistency of one voting protocol

- Each row should contain exactly one " 1 " entry in these columns
- The columns (ja, nein, Enthaltung, ungültig, nicht abgegeben) should contain as many " 1 " as the summary count announces

Consistency check (spreadsheet)

■ Load into spreadsheet program
■ Make a copy (save with new name)

- Create a new work sheet

■ On the new sheet create a formula that checks

- whether each of the yes/no columns contains 0 or 1
- that the yes/no columns contain exactly one 1
- the above two points for each row

A sad truth of vote by role call ...

■ Most of the time the fractions demand that their members vote according to the party line

- some fractions do not enforce the whip
- for some ballots, fractions do not impose restrictions

■ As the voting is public, it is much tougher to "defect" or "betray" the party by voting differently

A sad truth of vote by role call ...

■ Most of the time the fractions demand that their members vote according to the party line

- some fractions do not enforce the whip
- for some ballots, fractions do not impose restrictions

■ As the voting is public, it is much tougher to "defect" or "betray" the party by voting differently

Task

■ Write formulas to check that parliamentarians mostly adhere to the whip
■ Which parties do / do not impose restrictions?

Second application Analysis of voting patterns

Scaling up

■ We just looked at one ballot

Scaling up

■ We just looked at one ballot
■ Can hardly be called a voting pattern!

Scaling up

■ We just looked at one ballot
■ Can hardly be called a voting pattern!
■ Using a spreadsheet is ok to analyze one data set

Scaling up

■ We just looked at one ballot
■ Can hardly be called a voting pattern!
■ Using a spreadsheet is ok to analyze one data set

- But in 2015, there were 56 such ballots

Scaling up

■ We just looked at one ballot
■ Can hardly be called a voting pattern!
■ Using a spreadsheet is ok to analyze one data set

- But in 2015, there were 56 such ballots
- Solution: program!

Reading xls in Python

Install Python module xlrd and pandas

- (from shell)

■ pip install xlrd

- pip install pandas

Analyzing xls in Python

Prepare for processing with pandas

```
import pandas
import xlrd
wb = xlrd.open_workbook (
    '20160128_2_xls-data.xls')
sheet = pandas.read_excel(book, engine="xlrd")
```


Analyzing xls in Python

Prepare for processing with pandas

```
import pandas
import xlrd
wb = xlrd.open_workbook (
    '20160128_2_xls-data.xls')
sheet = pandas.read_excel(book, engine="xlrd")
```


Dataframe

- sheet is a pandas dataframe

■ len (sheet) get \# rows

- Columns are named according to first row in xls file
- sheet. columns lists columns

■ sheet.index lists row indexes

Consistency

def check_consistency (row):
ja $=$ row ['ja']
nein $=$ row['nein']
enth $=$ row ['Enthaltung']
ing = row[u'ungueltig'] \# should be u umlaut
na \quad row ['nichtabgegeben']
valid $=((j a==0$ or $j a==1)$ and
(nein == 0 or nein == 1) and
(enth == 0 or enth == 1) and
(ing $==0$ or ing $==1$) and
(na $==0$ or $\mathrm{na}==1$) and
(ja + nein + enth + ing + na == 1))
return valid

Consistency

for all rows

Pattern for processing dataframe

```
for idx, row in sheet.iterrows():
    # idx - row number
    # row - representation of the row
    # indexed by column names
```


Consistency

for all rows

Pattern for processing dataframe

```
for idx, row in sheet.iterrows():
    # idx - row number
    # row - representation of the row
    # indexed by column names
```


Example (continued)

```
invalid_set = set()
for idx, row in sheet.iterrows():
    if not check_consistency(row):
        invalid_set.add(idx)
print("invalid entries: " +
    str (len (invalid_set)))
print(invalid_set)
```

