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Graph Theory in a Nutshell

§ A graph G=(V,E) 
- nodes/vertices V 
- edges E 

• connecting two nodes 

§ Variants 
- undirected/directed edge 

= lines/arrows 
- loops 

• edge connecting the node 
with itself 

- node/edge weights 
• mapping of numbers to 

the nodes/edges
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How dead ends undermine power grid stability
Peter J. Menck, Jobst Heitzig, Jürgen Kurths & Hans Joachim Schellnhuber
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Terms in Graphs

§ Degree of a node 
§ number of edges at a node u  

§ Regular graph 
§ if the maximum degree = minimum 

degree in a graph 
§ Indegree/Out-degree 

§ in case of directed graph (digraph), the 
number of  edges pointing to/from a node 
u 

§ Two nodes u,v are adjacent 
§ if they are connected via an edge 

§ A graph is simple, if there are no loops or no 
parallel edges 
§ usually only simple graphs are considered
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Paths

§ A sequence of 
adjacent nodes is 
called a path 

§ Paths with same 
start and end are 
called cycles 

§ The length of a path 
is the number of 
edges passed 

§ A path is simple if no 
edge occurs twice 
§ it is elementary if no 

node occurs twice
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Shortest Paths

§ Given  
§ a graph G=(V,E) 
§ start node s, target node t 

§ Compute the shortest path 
§ Dijkstras algorihm 

§ Start with set S={s} 
§ In each round 

§ add the node u of the 
neighborhood of S 
§ which has the shortest 

distance to s 
§ store the edge used to u
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Connectivity

§ An undirected graph is connected 
§ if for all nodes u,v there exists a 

path connecting u and v 
§A directed graph is weakly 

connected 
§ if the corresponding undirected 

graph is connected 
§A directed graph is strongly 

connected 
§ if for all nodes u,v there exists a 

directed path connecting u and v 
§A graph is k-(vertex)-connected, if 

there are k node disjoint paths 
between all nodes 

§analog definition for d-edge 
connected
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Special Graphs

§ Complete (simple) undirected graphs 
§ no. of edges is n(n-1)/2 

§ Trees are connected undirected graphs without cycles 
§ sets of graphs are called forests
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§ Directed acyclic graph 

§ Topologic Sorting 
§ mapping f of {1,..,n} to V 

such that for edge (u,v) 
§ f(u) < f(v)

DAG: Directed Acyclic Graph
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Flows in Networks

§ Motivation 
- Optimize flow from source to target 

§ Definition:  
- (Single-commodity) maximum flow problem 
- Given  

• a graph G=(V,E) 
• a capacity function w:E→R+

0, 
• source set S and target set T 

- Find a maximum flow from S to T 
§ A flow is a function f : E → R0

+ such that 
- for all e ∈ E: f(e) ≤ w(e) 
- for all e ∉ E: f(e) = 0 
- for all u,v ∈ V: f(u,v)≥0 

§ Maximize flow
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Flows in Networks
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Computation of the Maximum Flow

§ Every natural pipe system solves the maximum flow problem 
§ Algorithms  

- Linear Programming  
• for real numbers 
• the flow is described by equations of a linear optimization problem 
• Simplex algorithm (or Ellipsoid method) can solve any linear equation 

system 
- Ford-Fulkerson 

• also for integers 
• as long as open paths exist, increase 

the flow on theses paths 
- open path:  path which increases the flow 

- Edmonds-Karp 
• special case of Ford-Fulkerson 
• use BFS (breadth first search) to find open paths
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Ford-Fulkerson

§ Find a path from the source 
node to the target node 

- where the capacity is not fully 
utilized 

- or which reduces the existing 
flow 

§ Compute the maximum flow 
on this augmenting path 

- by the minimum of the flow 
that can be added on all paths 

§ Add the flow on the path to 
the existing flow 

§ Repeat this step until no 
flow can be added anymore
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Edmunds-Karp

§ Search path for Ford-Fulkerson algorithm 
§ Choose the shortest augmenting path 

- Computation by breadth-first-search 
§ leads to run-time O(|V| |E|2) 

- whereas Ford-Fulkerson could have exponential run-time
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Example
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Example
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Example
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Minimum Cut in Networks

§ Motivation 
- Find bottleneck in networks 

§ Definition 
- Min Cut problem 
- Given  

• graph G=(V,E) 
• capacity function w: E → R+0, 
• sources S and targets T 

- Find minimum cut between S and T 

§ A cut C is a set of edges 
- such that every path from a node of S to  

a node of T, contains an edge of C 

§ The size of a cut is
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Min-Cut-Max-Flow Theorem

§ Theorem 
- The minimum cut equals 

the maximum flow 

§ Algorithms for 
minimum cut 
- can be obtained from the 

maximum flow 
algorithms
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