

Energy Informatics 05 Networks for Smart Grids

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

What is Smart Grid? RFC 6272

Smart grid

- electricity network utilizing digital technology
- delivers electricity from suppliers to consumers
- using two-way digital communications
- control appliances at consumers' homes

Features

- saves energy, reduces costs, increases reliability, transparency.
- net metering system
- smart meters, integrates renewable energy

Communication

- between system users, operators, automatic devices
- monitoring, tracks electricity flows

Smart Grid Conceptual Actors

Smart Grid Conceptual Actors / Data Flow Diagram – Cross Domain Network Focused – OpenSG / SG-Network TF

DRAFT 14Feb2012

Base – file SG-NET-diagram-r5.1.vsd
page size: ANSI-D

European Smart Grid Programs

CEN/CENELEC/ETSI Smart Grids Joint WG

- A common initiative http://www.smartgrids.eu
- European technology platform for the electricity networks of the future

IEC Global Standards for the Smart Grid

- Strategic Group 3 working on Smart Grid since April '09
- Cooperation with NIST
- Identified relevant IEC standards for Smart Grid
- http://smartgridstandardsmap.com

OSGP: supported by:

OSGP

Goal

- Globally-applicable standards for Information and Communications Technologies
- Based on Echelon specifications for Data Concentrator –
 Smart meter communications
- Layered protocol stack
- common data model for utilities
- high-performance and reliability
- mandatory security and privacy

Standardized by ETSI

- European Telecoms Standards Institute (ETSI)
- EU-recognized standards with CEN, ETCSI, CENELEC

OSGP Powerline communication

- Lower cost investment
- Lower operating cost
 - Communication cost (daily on-going communication)
- Reliability, performance
 - Proven, up to 99.8% ->99.94%-100%
 - Daily, including Load profiles
- Technical information
 - Phase, Grid
 - Outage detection
 - Grid Topology
- LV Transformer centric approach
 - Be able to run applications within a LV area (the next generation DC: Edge Control Node)

Smart Metering Standards Activities

- EU: many standards
- M/441 standardization mandate
 - CEN, CENELEC and ETSI
- European OPEN meter project
 - 7th Framework Programme, finished 2012
 - http://openmeter.com/
- DLMS/COSEM: IEC 62056 / EN 13757
 - projects in Netherlands, France,

OSGP

- Layered OSI protocol stack
- ETSI Group spec GS OSG 001
 - Application FISI Group spec GS OSG 001
 - Media independent
- ISO/EN14908.1 Control Networking
 - Layers 2 to 6
- ETSI Technical special Sp
 - High performance power line communication media
 - Support many smart grid device types
- Designed for additional media
- Supported and maintained by ESNA

ETSI OSG 001

- Events allow devices to report information asynchronously
 - Alerts/alarens(色岛山村る内部である001
 - Conditions/thresholds being met (e.g., under voltage)
 - Exceptions detected (e.g., phase loss)
 - Self-check errors (e.g., low battery detected)
 communication media
 - State or status change (e.g., season change)
- 96 events (50 basic, 46 extended)
- OSGP provides a standard way for devices to send extended events

ETSI OSG 001

- Models devices as a collection of data, methods and events
 - bandwidth Efficient, persabling high 001 performance on bandwidth constrained media
 - Includes core meshing services for reliable, scalable operation
 - Built-in, mandatoriyasecurity and privacy for every data exchange
 - allows commissioning, automated device discovery, automatic topology management
- Deployed in over 3.5 million smart grid devices

ISO/IEC 14908.1 (LonTalk)

- Optimized, multi-application control network protocol stack
 - reliable defivery, muntipesse hessagnig
 - Low overhead, low bandwidth
- Probably insecure:

 Layers 2 to 6
 - Philipp Jovanovic and Samuel Neves.
 Dumb Crypto in Smart Grids:
 Practical Cryptanalysis of the Open
 Smart Grid Protocol 2015 https://eprint.iacr.org/2015/428 The
 Cryptology ePrint Archive

OSCP Meshing

- Any OSGB device can be a repeater
- Repeating up to 16 hops
- Automatic repeater selection
 Any OSGP device can be a repeater

ETSI TS 103 908

- Based on ISO/IEC 14908.3 2006 with adaptations for A-band operation, 野崎 匠地599655105G 001
- High-performance narrow band power line channel for control networking in the smart grid
 - Binary Phase Shift Keyed (BPSK) modulated carrier
 - 3.24 kbps raw channel data rate
 - Deployed in over 35 million smart meters and grid devices

IPv6 for Field Area Networks

IPv6 for Field Area Networks

IEEE PHY and MAC standards

- IEEE 802.15.4
 - low-power wireless PHY and MAC layers
 - for smart object networks
 - low power consumption
 - link speeds up to 250 kbps in 2.4GHz ISM frequency band
- IEEE 802.15.4g Task Group, aka Smart Utility Networks (SUN) Task Group
 - OFDM, multiple data rates, Multirate and multiregional offset quadrature phase-shift keying
- IEEE 1901.2 Power Line Communication
 - "no new-wire technology" reuses electrical wire
 - Data rate up to 500 kbps
 - low-frequency (<500 kHz) PLC spectrum

6LoWPAN

- main focus of the 6LoWPAN WG
 - optimize the transmission of IPv6 packets over low-power and lossy networks such as IEEE 802.15.4 (WPAN)
 - Header compression
 - Fragmentation of IPv6 packets (max 127 bytes)
 - Duplicate address detection

CoNe Freiburg

IEEE 802.15.4

- Fundamental lower network layer for wireless personal area network
- Features
 - Realtime by guaranteed time slots
 - beacon messages
 - Collision avoidance
 - CSMA/CA, random exponential back off
 - Frequency bands (868/915/2450 MHz)
 - 20-250 kbit/s
- Topologies
 - Star, Peer-to-Peer (point-to-point)

Problem of Wireless Media Access (MAC)

- Unknown number of participants
 - broadcast
 - many nodes simultaneously
 - only one channel available
 - asymmetric situations
- Collisions produce interference
- Media Access
 - Rules to participate in a network

Hidden Terminal Problem

MACA

Phil Karn

 MACA: A New Channel Access Method for Packet Radio 1990

Alternative names:

- Carrier Sensing Multiple Access / Collision Avoidance (CSMA/CA)
- Medium Access with Collision Avoidance (MACA)

Aim

- Solution of the Hidden and Exposed Terminal Problem

Idea

- Channel reservation before the communication
- Minimization of collision cost

RTS/CTS

- Sender sends Request to Send (RTS) to B.
- Receivers answers with Clear to Send (CTS) to A
- Sender sends Data

Details for Sender

- A sends RTS
 - waits certain time for CTS
- If A receives CTS in time
 - A sends packet
 - otherwise A assumes a collision at B
 - doubles Backoff-counter
 - and chooses a random waiting time from {1,...,Backoff}
 - After the waiting time A repeats from the beginning

Details for Receiver

- After B has received RTS
 - B sends CTS
 - B waits some time for the data packet
 - If the data packet arrives then the process is finished
 - Otherwise B is not blocked

Details for Third Parties

- C receives RTS of A
 - waits certain time for CTS of B
- If CTS does not occur
 - C is free for own communication
- If CTS of B has been received
 - then C waits long enough such that B can receive the data packet
- D receives CTS of B
- waits long enough such that B can receive the data packet
- E receives RTS of A and CTS of B
- waits long enough such that B can receive the data packet

Zigbee

- Designed by the Zigbee alliance
 - for low power consumption embedded systems
 - provides network security
- Device Types
 - Zigbee coordinator node
 - root of network tree, bridge to other networks
 - Full function device
 - router, may be coordinator
 - Reduced function device
 - cannot relay, cheaper

Application

API

Security

32/64/128 bit encryption

Network

Star/Mesh/Cluster-Tree

MAC

PHY

868MHz/915MHz/2.4GHz

Zigbee Alliance

Energy Informatics 05 Networks for Smart Grids

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg