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Who are you?
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Data Modeling and Analysis

Python basics

Python for data analytics
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Jumping into Python

From the python.org website

Python is an easy to learn, powerful programming language. It
has efficient high-level data structures and a simple but effective
approach to object-oriented programming. Python’s elegant
syntax and dynamic typing, together with its interpreted nature,
make it an ideal language for scripting and rapid application
development in many areas on most platforms.

What does that mean?

interpreted: interactive like a pocket calculator

dynamic typing: programs just run . . .
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Python as a calculator
Numbers: int, float

Syntactic elements

int(egers): 0, 1, -1, 42, -32768, . . .

float(ing point numbers): 1.0, 3.14159, .2288, -43.4 . . .

usual arithmetic operators: +, -, *, /, % (remainder)

Talking to Python

>>> 2 + 2

4

>>> 50 - 5*6

20

>>> (50 - 5.0*6) / 4

5.0

>>> 8 / 5.0

1.6
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Python as a calculator
Strings

Syntactic elements

"a string"

’Monty Python\’s flying circus’

Operations: concatenation, indexing, and many more

Talking to Python

>>> ’Monty Python\’s flying circus ’

"Monty Python ’s flying circus"

>>> ’Monty ’ ’Python ’ # concatenation

’Monty Python ’

>>> ’Monty’ + ’ ’ + ’Python ’ # concatenation

’Monty Python ’

>>> ’Monty Python ’[4] # index starts at 0

’y’
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Python as a calculator
Variables

Syntactic elements

variable names: x, y, tissue, one_of, . . .

assignment: x = 1, y = 43.2, tissue = ’tempo’

Talking to Python

>>> width = 42

>>> width

42

>>> width * 2

84

>>> height

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

NameError: name ’height ’ is not defined
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Python as a calculator
Lists

Syntactic elements

empty list: []

enumerated lists:
[1, 3, 5, 7, 9], [’a’, ’e’, ’i’, ’o’, ’u’]

operations: index and concatenation (like string)

Talking to Python

>>> primes = [2, 3, 5, 7, 11]

>>> primes

[2, 3, 5, 7, 11]

>>> primes [3]

7

>>> primes + [13, 17, 19]

[2, 3, 5, 7, 11, 13, 17, 19]
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Functions
Define your own functions

Double the input

>>> def double(n): # define function named ’double ’

... return 2*n # return value of expression

...

>>> double (21)

42

>>> double("la") # oops

’lala’

Important: Indentation (PEP-8)

The function body needs to be indented by four spaces.
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Pass or fail?

Evaluating a test

You can obtain a certain maximum number of marks in a test
and you need at least a certain percentage of marks to pass.
Write a function that takes the maximum marks, minimum
percentage to pass, and the actually reached marks and returns
pass or fail (as a string).

Comparison and Conditional

Solving this task requires a comparison and a conditional.
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Comparison

Comparison Operators

==, != “equals” and “not equals”

<, > “less than” and “greater than”

<=, >= “less than or equal” and “greater than or equal”

Properties

both operands must have the same type

most types are sensible (numbers, strings, . . . )

result is False or True
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Conditional
Examples

>>> if 4<5:

... print("yes")

... else:

... print("no")

...

yes

>>> if "max" < "fred":

... print("max goes first")

... else:

... print("fred goes first")

...

fred goes first
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Pass or fail?

Python implementation

>>> def check_test(max_marks , percentage , marks):

... if marks >= max_marks * percentage / 100:

... return "pass"

... else:

... return "fail"

...

>>> check_test (100, 50, 49)

’fail’

>>> check_test (100, 50, 50)

’pass’

>>> check_test (100, 50, 99)

’pass’
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Pass or fail?

Extension

What if someone calls the function with nonsense? We want the
function to return the string "illegal" in such cases.

Partial solution

def check_test(max_marks , p, marks):

if p < 0 or p > 100:

return "illegal"

if max_marks <= 0:

return "illegal"

if marks < 0 or marks > max_marks:

return "illegal"

# rest as before

Python logical operators

or, and, not.
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Temperature

Gauging the temperature of a drink

We want to gauge the temperature of (hot) coffee. The optimal
drinking temperature is between 50 and 60 degrees centigrade.

Python implementation

>>> def coffee_drinkable(temp):

... return 50 <= temp <= 60

... # returns a boolean , True or False

...

>>> coffee_drinkable (10)

False

>>> coffee_drinkable (100)

False

>>> coffee_drinkable (55)

True
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More discerning temperature check

Coffee temperature

Given the temperature in a cup of coffee, return “too hot” if the
temperature exceeds 60 degrees, “just right” if the temperature is
between 50 and 60 degrees, and “too cold” if it is below 50.
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Conditional for coffee judgment

>>> def coffee_judgment(temp):

... if temp < 50:

... return "too cold"

... if temp < 60:

... return "just right"

... else:

... return "too hot"

...

>>> coffee_judgment (45)

’too cold’

>>> coffee_judgment (55)

’just right ’

>>> coffee_judgment (65)

’too hot’
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Functions
Solving a quadratic equation

Task: solve ax2 + bx + c = 0 using the quadratic formula

x =
−b ±

√
b2 − 4ac

2a

Implementation of quadratic formula

>>> import math

>>> def midnight(a, b, c):

... return (-b + math.sqrt(b*b - 4*a*c))/2/a

...

>>> midnight (1,0,-1)

1.0

Looks good! 1.0 is a root of x2 − 1 = (x + 1)(x − 1)
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Functions
Improving the implementation

but what about the other root −1.0 of x2 − 1?

we could return a list of roots!

Revised implementation of quadratic formula

>>> def midnight2(a, b, c):

... d = b*b - 4*a*c

... return [(-b + math.sqrt(d))/2/a,

... (-b - math.sqrt(d))/2/a]

...

>>> midnight2 (1,0,-1)

[1.0, -1.0]

Ok, got both now . . . are we done?
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More tests

Test #1

x2 + 2x + 1 = 0

Testing the implementation

>>> midnight2 (1,2,1)

[-1.0, -1.0]

>>> # unsatisfactory. should return one value
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More tests
Improving the implementation

Test #1

x2 + 1 = 0

Testing the implementation

>>> midnight2 (1,0,1)

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

File "<stdin >", line 3, in midnight2

ValueError: math domain error

>>> # oops! this equation has no real roots!
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Facts from mathematics

Consider equation E :

ax2 + bx + c = 0

Let d = b2 − 4ac

E has two distinct real solutions if d > 0

E has one real solution if d = 0

E has no real solutions if d < 0

We need to model this case distinction in the midnight function
using a conditional if, else.
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Case distinction: if-else

Final implementation of quadratic formula

>>> def midnight3(a, b, c):

... d = b*b - 4*a*c

... if d < 0:

... return []

... elif d == 0:

... return [-b/2/a]

... else:

... return [(-b + math.sqrt(d))/2/a,

... (-b - math.sqrt(d))/2/a]

...

>>> midnight3 (1,0,-1)

[1.0, -1.0]

>>> midnight3 (1,2,1)

[-1]

>>> midnight3 (1,0,1)

[]
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Final thoughts

1 The present way of dealing with d < 0 is unsatisfactory.
Python also supports complex numbers: just import cmath

and use cmath.sqrt to compute the two roots in this case.

2 Try midnight3 (0,1,2). What happens?
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On if, elif, and else

else marks alternative block to exec

def f(a, b):

d = 0

if a > 10:

d = 1

else:

d = 2

return d

Example calls

f (0,0) : returns 2

f (20,0) : returns 1

f (20,20) : returns 1

f (0, 20) : return 2
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On if, elif, and else II

if continues execution after indented block

def f(a, b):

d = 0

if a > 10:

d = 1

if b > 10:

d = 2

return d

Example calls

f (0,0) : returns 0

f (20,0) : returns 1

f (20,20) : returns 2 (second assignment overwrites first)

f (0, 20) : return 2
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On if, elif, and else III

elif skips execution after indented block

def g(a, b):

d = 0

if a > 10:

d = 1

elif b > 10:

d = 2

return d

Example calls

g (0,0) : returns 0

g (20,0) : returns 1

g (20,20) : returns 1 (elif skips when a > 10)

g (0,20) : return 2
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Functions
Check first letter

Task

Write a function check first that takes a string and a character
and checks whether it matches the first character of the string.

Solution

>>> def check_first(str , ch):

... return str [0] == ch

...

>>> check_first(’Larynx ’, ’L’)

True

>>> check_first(’atama’, ’x’)

False

>>> check_first ([2,3,5], 2) # works for lists!

True
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Output and formatting
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Printing

Printing

The print statement takes any object and prints it.

Talking to Python

>>> print (42)

42

>>> print (4/5)

0.8

>>> print(True)

True

>>> print("flame")

flame

>>> "flame" # an expression with string value

’flame ’

>>> 1* print(’c’)

TypeError: unsupported operand type(s) for *: ’int’ and ’NoneType ’
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Printing any object

>>> print ([1 ,2,3])

[1, 2, 3]

>>> print ([[], [1], [1 ,2]])

[[], [1], [1, 2]]

>>> def double(x):

... return 2*x

...

>>> print(double)

<function double at 0x10acd62a8 >
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Formatted Printing

String operations create a string in the desired form, then print.

f-Strings

String literals with holes for expressions.

>>> captain = "Jim"

>>> message = f"He’s dead {captain }."

"He’s dead Jim."

Additional formatting for numbers

>>> f"pi is {math.pi}"

’pi is 3.141592653589793 ’

>>> f"pi is {math.pi :10.2}"

’pi is        3.1’

>>> f"pi is {math.pi :10.8}"

’pi is  3.1415927 ’
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More Formatting

String Alignment

These methods align their receiver string inside a given space of n
characters.

ljust() align to left

rjust() align to right

center() align in center

>>> "x".rjust (5)

’    x’

>>> "x".ljust (5)

’x    ’

>>> "x".center (5)

’  x  ’

More useful string operations may be found here https://docs.

python.org/3.6/library/stdtypes.html#string-methods
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String Formatter

Given a template string, the format method can fill in the holes.

>>> "Dear {}, I’m so {} today!".format("diary", "cold")

"Dear diary , I’m so cold today!"

If the sequence of arguments is different, then the template can
use explicit positions.

>>> "Dear {1}, I’m {0} today!".format (24, "Mum")

"Dear Mum , I’m 24 today!"

Many further options to format numbers and other data.
https://docs.python.org/3.6/library/string.html#

formatstrings
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Input
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Reading text from the console
Line Input

The console is called standard input stdin. The function input

reads a line and returns it as a string.

>>> x = input ()

wurstbrot

>>> x

’wurstbrot ’

Word Input

To read multiple words, we need to split the line.

>>> y = input ()

first things first

>>> y

’first things    first ’

>>> y.split()

[’first ’, ’things ’, ’first ’]
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Reading numbers

Number input

Each numeric type comes with a function to read a number from
a string or to convert it from another numeric format.

int builds a machine integer from a string or another number

float builds a floating point number . . .

long builds an integer with unlimited precision

complex builds a complex number
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Example Uses

>>> int("32")

32

>>> int(" -768")

-768

>>> int("   1024   ")

1024

>>> int("   1024 !  ")

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

ValueError: invalid literal for int() with

base 10: ’   1024 !  ’

Number Format

Only legal number characters allowed!
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Example: Reading Input for a Task

Task

Read two integers a and b in this order from STDIN and print
three lines where:

1 The first line contains the sum of the two numbers.

2 The second line contains the difference (a− b).

3 The third line contains the product of the two numbers.

Input format

The first line contains the first integer, a. The second line
contains the second integer, b.

Constraints

1 ≤ a ≤ 1010

1 ≤ b ≤ 1010
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Solution

def solution ():

a = int(input ())

b = int(input ())

print(a+b)

print(a-b)

print(a*b)

Testing

>>> solution ()

123

234

357

-111

28782
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Same Task, Different Input Format

Input format

The first line contains both integers, a and b, in this order.

def solution2 ():

line = input (). split()

a = int(line [0])

b = int(line [1])

print (a+b)

print (a-b)

print (a*b)
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Continued

Testing

>>> solution2 ()

123 234

357

-111

28782
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Your Task

Can you write a solution that is flexible as to whether the
input is on one or two lines?
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End Part I
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