
Energy Informatics
Data Modeling and Analysis

Albert-Ludwigs-Universität Freiburg

Peter Thiemann

13 Feb 2017

Who am I?

Thiemann Energy Informatics 13 Feb 2017 2 / 45

Who are you?

Thiemann Energy Informatics 13 Feb 2017 3 / 45

Data Modeling and Analysis

Python basics

Python for data analytics

Thiemann Energy Informatics 13 Feb 2017 4 / 45

Jumping into Python

From the python.org website

Python is an easy to learn, powerful programming language. It
has efficient high-level data structures and a simple but effective
approach to object-oriented programming. Python’s elegant
syntax and dynamic typing, together with its interpreted nature,
make it an ideal language for scripting and rapid application
development in many areas on most platforms.

What does that mean?

interpreted: interactive like a pocket calculator

dynamic typing: programs just run . . .

Thiemann Energy Informatics 13 Feb 2017 5 / 45

Jumping into Python

From the python.org website

Python is an easy to learn, powerful programming language. It
has efficient high-level data structures and a simple but effective
approach to object-oriented programming. Python’s elegant
syntax and dynamic typing, together with its interpreted nature,
make it an ideal language for scripting and rapid application
development in many areas on most platforms.

What does that mean?

interpreted: interactive like a pocket calculator

dynamic typing: programs just run . . .

Thiemann Energy Informatics 13 Feb 2017 5 / 45

Jumping into Python

From the python.org website

Python is an easy to learn, powerful programming language. It
has efficient high-level data structures and a simple but effective
approach to object-oriented programming. Python’s elegant
syntax and dynamic typing, together with its interpreted nature,
make it an ideal language for scripting and rapid application
development in many areas on most platforms.

What does that mean?

interpreted: interactive like a pocket calculator

dynamic typing: programs just run . . .

Thiemann Energy Informatics 13 Feb 2017 5 / 45

Jumping into Python

From the python.org website

Python is an easy to learn, powerful programming language. It
has efficient high-level data structures and a simple but effective
approach to object-oriented programming. Python’s elegant
syntax and dynamic typing, together with its interpreted nature,
make it an ideal language for scripting and rapid application
development in many areas on most platforms.

What does that mean?

interpreted: interactive like a pocket calculator

dynamic typing: programs just run . . .

Thiemann Energy Informatics 13 Feb 2017 5 / 45

Python as a calculator
Numbers: int, float

Syntactic elements

int(egers): 0, 1, -1, 42, -32768, . . .

float(ing point numbers): 1.0, 3.14159, .2288, -43.4 . . .

usual arithmetic operators: +, -, *, /, % (remainder)

Talking to Python

>>> 2 + 2

4

>>> 50 - 5*6

20

>>> (50 - 5.0*6) / 4

5.0

>>> 8 / 5.0

1.6

Thiemann Energy Informatics 13 Feb 2017 6 / 45

Python as a calculator
Numbers: int, float

Syntactic elements

int(egers): 0, 1, -1, 42, -32768, . . .

float(ing point numbers): 1.0, 3.14159, .2288, -43.4 . . .

usual arithmetic operators: +, -, *, /, % (remainder)

Talking to Python

>>> 2 + 2

4

>>> 50 - 5*6

20

>>> (50 - 5.0*6) / 4

5.0

>>> 8 / 5.0

1.6

Thiemann Energy Informatics 13 Feb 2017 6 / 45

Python as a calculator
Strings

Syntactic elements

"a string"

’Monty Python\’s flying circus’

Operations: concatenation, indexing, and many more

Talking to Python

>>> ’Monty Python\’s flying circus ’

"Monty Python ’s flying circus"

>>> ’Monty ’ ’Python ’ # concatenation

’Monty Python ’

>>> ’Monty’ + ’ ’ + ’Python ’ # concatenation

’Monty Python ’

>>> ’Monty Python ’[4] # index starts at 0

’y’

Thiemann Energy Informatics 13 Feb 2017 7 / 45

Python as a calculator
Strings

Syntactic elements

"a string"

’Monty Python\’s flying circus’

Operations: concatenation, indexing, and many more

Talking to Python

>>> ’Monty Python\’s flying circus ’

"Monty Python ’s flying circus"

>>> ’Monty ’ ’Python ’ # concatenation

’Monty Python ’

>>> ’Monty’ + ’ ’ + ’Python ’ # concatenation

’Monty Python ’

>>> ’Monty Python ’[4] # index starts at 0

’y’

Thiemann Energy Informatics 13 Feb 2017 7 / 45

Python as a calculator
Variables

Syntactic elements

variable names: x, y, tissue, one_of, . . .

assignment: x = 1, y = 43.2, tissue = ’tempo’

Talking to Python

>>> width = 42

>>> width

42

>>> width * 2

84

>>> height

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

NameError: name ’height ’ is not defined

Thiemann Energy Informatics 13 Feb 2017 8 / 45

Python as a calculator
Variables

Syntactic elements

variable names: x, y, tissue, one_of, . . .

assignment: x = 1, y = 43.2, tissue = ’tempo’

Talking to Python

>>> width = 42

>>> width

42

>>> width * 2

84

>>> height

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

NameError: name ’height ’ is not defined

Thiemann Energy Informatics 13 Feb 2017 8 / 45

Python as a calculator
Lists

Syntactic elements

empty list: []

enumerated lists:
[1, 3, 5, 7, 9], [’a’, ’e’, ’i’, ’o’, ’u’]

operations: index and concatenation (like string)

Talking to Python

>>> primes = [2, 3, 5, 7, 11]

>>> primes

[2, 3, 5, 7, 11]

>>> primes [3]

7

>>> primes + [13, 17, 19]

[2, 3, 5, 7, 11, 13, 17, 19]

Thiemann Energy Informatics 13 Feb 2017 9 / 45

Python as a calculator
Lists

Syntactic elements

empty list: []

enumerated lists:
[1, 3, 5, 7, 9], [’a’, ’e’, ’i’, ’o’, ’u’]

operations: index and concatenation (like string)

Talking to Python

>>> primes = [2, 3, 5, 7, 11]

>>> primes

[2, 3, 5, 7, 11]

>>> primes [3]

7

>>> primes + [13, 17, 19]

[2, 3, 5, 7, 11, 13, 17, 19]

Thiemann Energy Informatics 13 Feb 2017 9 / 45

Functions
Define your own functions

Double the input

>>> def double(n): # define function named ’double ’

... return 2*n # return value of expression

...

>>> double (21)

42

>>> double("la") # oops

’lala’

Important: Indentation (PEP-8)

The function body needs to be indented by four spaces.

Thiemann Energy Informatics 13 Feb 2017 10 / 45

Pass or fail?

Evaluating a test

You can obtain a certain maximum number of marks in a test
and you need at least a certain percentage of marks to pass.
Write a function that takes the maximum marks, minimum
percentage to pass, and the actually reached marks and returns
pass or fail (as a string).

Comparison and Conditional

Solving this task requires a comparison and a conditional.

Thiemann Energy Informatics 13 Feb 2017 11 / 45

Pass or fail?

Evaluating a test

You can obtain a certain maximum number of marks in a test
and you need at least a certain percentage of marks to pass.
Write a function that takes the maximum marks, minimum
percentage to pass, and the actually reached marks and returns
pass or fail (as a string).

Comparison and Conditional

Solving this task requires a comparison and a conditional.

Thiemann Energy Informatics 13 Feb 2017 11 / 45

Comparison

Comparison Operators

==, != “equals” and “not equals”

<, > “less than” and “greater than”

<=, >= “less than or equal” and “greater than or equal”

Properties

both operands must have the same type

most types are sensible (numbers, strings, . . .)

result is False or True

Thiemann Energy Informatics 13 Feb 2017 12 / 45

Conditional
Examples

>>> if 4<5:

... print("yes")

... else:

... print("no")

...

yes

>>> if "max" < "fred":

... print("max goes first")

... else:

... print("fred goes first")

...

fred goes first

Thiemann Energy Informatics 13 Feb 2017 13 / 45

Pass or fail?

Python implementation

>>> def check_test(max_marks , percentage , marks):

... if marks >= max_marks * percentage / 100:

... return "pass"

... else:

... return "fail"

...

>>> check_test (100, 50, 49)

’fail’

>>> check_test (100, 50, 50)

’pass’

>>> check_test (100, 50, 99)

’pass’

Thiemann Energy Informatics 13 Feb 2017 14 / 45

Pass or fail?

Extension

What if someone calls the function with nonsense? We want the
function to return the string "illegal" in such cases.

Partial solution

def check_test(max_marks , p, marks):

if p < 0 or p > 100:

return "illegal"

if max_marks <= 0:

return "illegal"

if marks < 0 or marks > max_marks:

return "illegal"

rest as before

Python logical operators

or, and, not.

Thiemann Energy Informatics 13 Feb 2017 15 / 45

Pass or fail?

Extension

What if someone calls the function with nonsense? We want the
function to return the string "illegal" in such cases.

Partial solution

def check_test(max_marks , p, marks):

if p < 0 or p > 100:

return "illegal"

if max_marks <= 0:

return "illegal"

if marks < 0 or marks > max_marks:

return "illegal"

rest as before

Python logical operators

or, and, not.

Thiemann Energy Informatics 13 Feb 2017 15 / 45

Pass or fail?

Extension

What if someone calls the function with nonsense? We want the
function to return the string "illegal" in such cases.

Partial solution

def check_test(max_marks , p, marks):

if p < 0 or p > 100:

return "illegal"

if max_marks <= 0:

return "illegal"

if marks < 0 or marks > max_marks:

return "illegal"

rest as before

Python logical operators

or, and, not.

Thiemann Energy Informatics 13 Feb 2017 15 / 45

Temperature

Gauging the temperature of a drink

We want to gauge the temperature of (hot) coffee. The optimal
drinking temperature is between 50 and 60 degrees centigrade.

Python implementation

>>> def coffee_drinkable(temp):

... return 50 <= temp <= 60

... # returns a boolean , True or False

...

>>> coffee_drinkable (10)

False

>>> coffee_drinkable (100)

False

>>> coffee_drinkable (55)

True

Thiemann Energy Informatics 13 Feb 2017 16 / 45

Temperature

Gauging the temperature of a drink

We want to gauge the temperature of (hot) coffee. The optimal
drinking temperature is between 50 and 60 degrees centigrade.

Python implementation

>>> def coffee_drinkable(temp):

... return 50 <= temp <= 60

... # returns a boolean , True or False

...

>>> coffee_drinkable (10)

False

>>> coffee_drinkable (100)

False

>>> coffee_drinkable (55)

True

Thiemann Energy Informatics 13 Feb 2017 16 / 45

More discerning temperature check

Coffee temperature

Given the temperature in a cup of coffee, return “too hot” if the
temperature exceeds 60 degrees, “just right” if the temperature is
between 50 and 60 degrees, and “too cold” if it is below 50.

Thiemann Energy Informatics 13 Feb 2017 17 / 45

Conditional for coffee judgment

>>> def coffee_judgment(temp):

... if temp < 50:

... return "too cold"

... if temp < 60:

... return "just right"

... else:

... return "too hot"

...

>>> coffee_judgment (45)

’too cold’

>>> coffee_judgment (55)

’just right ’

>>> coffee_judgment (65)

’too hot’

Thiemann Energy Informatics 13 Feb 2017 18 / 45

Functions
Solving a quadratic equation

Task: solve ax2 + bx + c = 0 using the quadratic formula

x =
−b ±

√
b2 − 4ac

2a

Implementation of quadratic formula

>>> import math

>>> def midnight(a, b, c):

... return (-b + math.sqrt(b*b - 4*a*c))/2/a

...

>>> midnight (1,0,-1)

1.0

Looks good! 1.0 is a root of x2 − 1 = (x + 1)(x − 1)

Thiemann Energy Informatics 13 Feb 2017 19 / 45

Functions
Improving the implementation

but what about the other root −1.0 of x2 − 1?

we could return a list of roots!

Revised implementation of quadratic formula

>>> def midnight2(a, b, c):

... d = b*b - 4*a*c

... return [(-b + math.sqrt(d))/2/a,

... (-b - math.sqrt(d))/2/a]

...

>>> midnight2 (1,0,-1)

[1.0, -1.0]

Ok, got both now . . . are we done?

Thiemann Energy Informatics 13 Feb 2017 20 / 45

Functions
Improving the implementation

but what about the other root −1.0 of x2 − 1?

we could return a list of roots!

Revised implementation of quadratic formula

>>> def midnight2(a, b, c):

... d = b*b - 4*a*c

... return [(-b + math.sqrt(d))/2/a,

... (-b - math.sqrt(d))/2/a]

...

>>> midnight2 (1,0,-1)

[1.0, -1.0]

Ok, got both now . . . are we done?

Thiemann Energy Informatics 13 Feb 2017 20 / 45

Functions
Improving the implementation

but what about the other root −1.0 of x2 − 1?

we could return a list of roots!

Revised implementation of quadratic formula

>>> def midnight2(a, b, c):

... d = b*b - 4*a*c

... return [(-b + math.sqrt(d))/2/a,

... (-b - math.sqrt(d))/2/a]

...

>>> midnight2 (1,0,-1)

[1.0, -1.0]

Ok, got both now . . . are we done?

Thiemann Energy Informatics 13 Feb 2017 20 / 45

Functions
Improving the implementation

but what about the other root −1.0 of x2 − 1?

we could return a list of roots!

Revised implementation of quadratic formula

>>> def midnight2(a, b, c):

... d = b*b - 4*a*c

... return [(-b + math.sqrt(d))/2/a,

... (-b - math.sqrt(d))/2/a]

...

>>> midnight2 (1,0,-1)

[1.0, -1.0]

Ok, got both now . . . are we done?

Thiemann Energy Informatics 13 Feb 2017 20 / 45

More tests

Test #1

x2 + 2x + 1 = 0

Testing the implementation

>>> midnight2 (1,2,1)

[-1.0, -1.0]

>>> # unsatisfactory. should return one value

Thiemann Energy Informatics 13 Feb 2017 21 / 45

More tests

Test #1

x2 + 2x + 1 = 0

Testing the implementation

>>> midnight2 (1,2,1)

[-1.0, -1.0]

>>> # unsatisfactory. should return one value

Thiemann Energy Informatics 13 Feb 2017 21 / 45

More tests
Improving the implementation

Test #1

x2 + 1 = 0

Testing the implementation

>>> midnight2 (1,0,1)

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

File "<stdin >", line 3, in midnight2

ValueError: math domain error

>>> # oops! this equation has no real roots!

Thiemann Energy Informatics 13 Feb 2017 22 / 45

More tests
Improving the implementation

Test #1

x2 + 1 = 0

Testing the implementation

>>> midnight2 (1,0,1)

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

File "<stdin >", line 3, in midnight2

ValueError: math domain error

>>> # oops! this equation has no real roots!

Thiemann Energy Informatics 13 Feb 2017 22 / 45

Facts from mathematics

Consider equation E :

ax2 + bx + c = 0

Let d = b2 − 4ac

E has two distinct real solutions if d > 0

E has one real solution if d = 0

E has no real solutions if d < 0

We need to model this case distinction in the midnight function
using a conditional if, else.

Thiemann Energy Informatics 13 Feb 2017 23 / 45

Case distinction: if-else

Final implementation of quadratic formula

>>> def midnight3(a, b, c):

... d = b*b - 4*a*c

... if d < 0:

... return []

... elif d == 0:

... return [-b/2/a]

... else:

... return [(-b + math.sqrt(d))/2/a,

... (-b - math.sqrt(d))/2/a]

...

>>> midnight3 (1,0,-1)

[1.0, -1.0]

>>> midnight3 (1,2,1)

[-1]

>>> midnight3 (1,0,1)

[]

Thiemann Energy Informatics 13 Feb 2017 24 / 45

Final thoughts

1 The present way of dealing with d < 0 is unsatisfactory.
Python also supports complex numbers: just import cmath

and use cmath.sqrt to compute the two roots in this case.

2 Try midnight3 (0,1,2). What happens?

Thiemann Energy Informatics 13 Feb 2017 25 / 45

On if, elif, and else

else marks alternative block to exec

def f(a, b):

d = 0

if a > 10:

d = 1

else:

d = 2

return d

Example calls

f (0,0) : returns 2

f (20,0) : returns 1

f (20,20) : returns 1

f (0, 20) : return 2

Thiemann Energy Informatics 13 Feb 2017 26 / 45

On if, elif, and else

else marks alternative block to exec

def f(a, b):

d = 0

if a > 10:

d = 1

else:

d = 2

return d

Example calls

f (0,0) : returns 2

f (20,0) : returns 1

f (20,20) : returns 1

f (0, 20) : return 2

Thiemann Energy Informatics 13 Feb 2017 26 / 45

On if, elif, and else II

if continues execution after indented block

def f(a, b):

d = 0

if a > 10:

d = 1

if b > 10:

d = 2

return d

Example calls

f (0,0) : returns 0

f (20,0) : returns 1

f (20,20) : returns 2 (second assignment overwrites first)

f (0, 20) : return 2

Thiemann Energy Informatics 13 Feb 2017 27 / 45

On if, elif, and else II

if continues execution after indented block

def f(a, b):

d = 0

if a > 10:

d = 1

if b > 10:

d = 2

return d

Example calls

f (0,0) : returns 0

f (20,0) : returns 1

f (20,20) : returns 2 (second assignment overwrites first)

f (0, 20) : return 2

Thiemann Energy Informatics 13 Feb 2017 27 / 45

On if, elif, and else III

elif skips execution after indented block

def g(a, b):

d = 0

if a > 10:

d = 1

elif b > 10:

d = 2

return d

Example calls

g (0,0) : returns 0

g (20,0) : returns 1

g (20,20) : returns 1 (elif skips when a > 10)

g (0,20) : return 2

Thiemann Energy Informatics 13 Feb 2017 28 / 45

On if, elif, and else III

elif skips execution after indented block

def g(a, b):

d = 0

if a > 10:

d = 1

elif b > 10:

d = 2

return d

Example calls

g (0,0) : returns 0

g (20,0) : returns 1

g (20,20) : returns 1 (elif skips when a > 10)

g (0,20) : return 2

Thiemann Energy Informatics 13 Feb 2017 28 / 45

Functions
Check first letter

Task

Write a function check first that takes a string and a character
and checks whether it matches the first character of the string.

Solution

>>> def check_first(str , ch):

... return str [0] == ch

...

>>> check_first(’Larynx ’, ’L’)

True

>>> check_first(’atama’, ’x’)

False

>>> check_first ([2,3,5], 2) # works for lists!

True

Thiemann Energy Informatics 13 Feb 2017 29 / 45

Functions
Check first letter

Task

Write a function check first that takes a string and a character
and checks whether it matches the first character of the string.

Solution

>>> def check_first(str , ch):

... return str [0] == ch

...

>>> check_first(’Larynx ’, ’L’)

True

>>> check_first(’atama’, ’x’)

False

>>> check_first ([2,3,5], 2) # works for lists!

True

Thiemann Energy Informatics 13 Feb 2017 29 / 45

Output and formatting

Thiemann Energy Informatics 13 Feb 2017 30 / 45

Printing

Printing

The print statement takes any object and prints it.

Talking to Python

>>> print (42)

42

>>> print (4/5)

0.8

>>> print(True)

True

>>> print("flame")

flame

>>> "flame" # an expression with string value

’flame ’

>>> 1* print(’c’)

TypeError: unsupported operand type(s) for *: ’int’ and ’NoneType ’

Thiemann Energy Informatics 13 Feb 2017 31 / 45

Printing any object

>>> print ([1 ,2,3])

[1, 2, 3]

>>> print ([[], [1], [1 ,2]])

[[], [1], [1, 2]]

>>> def double(x):

... return 2*x

...

>>> print(double)

<function double at 0x10acd62a8 >

Thiemann Energy Informatics 13 Feb 2017 32 / 45

Formatted Printing

String operations create a string in the desired form, then print.

f-Strings

String literals with holes for expressions.

>>> captain = "Jim"

>>> message = f"He’s dead {captain }."

"He’s dead Jim."

Additional formatting for numbers

>>> f"pi is {math.pi}"

’pi is 3.141592653589793 ’

>>> f"pi is {math.pi :10.2}"

’pi is 3.1’

>>> f"pi is {math.pi :10.8}"

’pi is 3.1415927 ’

Thiemann Energy Informatics 13 Feb 2017 33 / 45

More Formatting

String Alignment

These methods align their receiver string inside a given space of n
characters.

ljust() align to left

rjust() align to right

center() align in center

>>> "x".rjust (5)

’ x’

>>> "x".ljust (5)

’x ’

>>> "x".center (5)

’ x ’

More useful string operations may be found here https://docs.

python.org/3.6/library/stdtypes.html#string-methods

Thiemann Energy Informatics 13 Feb 2017 34 / 45

https://docs.python.org/3.6/library/stdtypes.html#string-methods
https://docs.python.org/3.6/library/stdtypes.html#string-methods

String Formatter

Given a template string, the format method can fill in the holes.

>>> "Dear {}, I’m so {} today!".format("diary", "cold")

"Dear diary , I’m so cold today!"

If the sequence of arguments is different, then the template can
use explicit positions.

>>> "Dear {1}, I’m {0} today!".format (24, "Mum")

"Dear Mum , I’m 24 today!"

Many further options to format numbers and other data.
https://docs.python.org/3.6/library/string.html#

formatstrings

Thiemann Energy Informatics 13 Feb 2017 35 / 45

https://docs.python.org/3.6/library/string.html#formatstrings
https://docs.python.org/3.6/library/string.html#formatstrings

Input

Thiemann Energy Informatics 13 Feb 2017 36 / 45

Reading text from the console
Line Input

The console is called standard input stdin. The function input

reads a line and returns it as a string.

>>> x = input ()

wurstbrot

>>> x

’wurstbrot ’

Word Input

To read multiple words, we need to split the line.

>>> y = input ()

first things first

>>> y

’first things first ’

>>> y.split()

[’first ’, ’things ’, ’first ’]

Thiemann Energy Informatics 13 Feb 2017 37 / 45

Reading numbers

Number input

Each numeric type comes with a function to read a number from
a string or to convert it from another numeric format.

int builds a machine integer from a string or another number

float builds a floating point number . . .

long builds an integer with unlimited precision

complex builds a complex number

Thiemann Energy Informatics 13 Feb 2017 38 / 45

Example Uses

>>> int("32")

32

>>> int(" -768")

-768

>>> int(" 1024 ")

1024

>>> int(" 1024 ! ")

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

ValueError: invalid literal for int() with

base 10: ’ 1024 ! ’

Number Format

Only legal number characters allowed!

Thiemann Energy Informatics 13 Feb 2017 39 / 45

Example: Reading Input for a Task

Task

Read two integers a and b in this order from STDIN and print
three lines where:

1 The first line contains the sum of the two numbers.

2 The second line contains the difference (a− b).

3 The third line contains the product of the two numbers.

Input format

The first line contains the first integer, a. The second line
contains the second integer, b.

Constraints

1 ≤ a ≤ 1010

1 ≤ b ≤ 1010

Thiemann Energy Informatics 13 Feb 2017 40 / 45

Solution

def solution ():

a = int(input ())

b = int(input ())

print(a+b)

print(a-b)

print(a*b)

Testing

>>> solution ()

123

234

357

-111

28782

Thiemann Energy Informatics 13 Feb 2017 41 / 45

Same Task, Different Input Format

Input format

The first line contains both integers, a and b, in this order.

def solution2 ():

line = input (). split()

a = int(line [0])

b = int(line [1])

print (a+b)

print (a-b)

print (a*b)

Thiemann Energy Informatics 13 Feb 2017 42 / 45

Continued

Testing

>>> solution2 ()

123 234

357

-111

28782

Thiemann Energy Informatics 13 Feb 2017 43 / 45

Your Task

Can you write a solution that is flexible as to whether the
input is on one or two lines?

Thiemann Energy Informatics 13 Feb 2017 44 / 45

End Part I

Thiemann Energy Informatics 13 Feb 2017 45 / 45

	Motivation
	Jumping into Python
	Functions

