
Energy Informatics
System Design — Data Analysis

Albert-Ludwigs-Universität Freiburg

Peter Thiemann

15 Feb 2016

What will
YOU

use programming for?

Thiemann Energy Informatics 15 Feb 2016 2 / 17

Data Analysis

Scrutinizing large data sets
meter readings, usage statistics, connection data

Coming up with hypotheses

Verifying the hypotheses

Information Sources and Data Conditioning

Reading data from files, CSV, XML, spreadsheet

Cleaning up: detecting formating errors, removing
implausible data, outliers, etc

Thiemann Energy Informatics 15 Feb 2016 3 / 17

Data Analysis

Scrutinizing large data sets
meter readings, usage statistics, connection data

Coming up with hypotheses

Verifying the hypotheses

Information Sources and Data Conditioning

Reading data from files, CSV, XML, spreadsheet

Cleaning up: detecting formating errors, removing
implausible data, outliers, etc

Thiemann Energy Informatics 15 Feb 2016 3 / 17

Our goal

Simple tools for simple data analysis

Rehearse with small examples

Thiemann Energy Informatics 15 Feb 2016 4 / 17

Real world data

Problem

Where to get it?

Often sensitive personal information

May be reconstruct identities from anonymized data

Example: network logs of the university

Solution for the course

Use publicly available data

Thiemann Energy Informatics 15 Feb 2016 5 / 17

First application
Text analysis

Thiemann Energy Informatics 15 Feb 2016 6 / 17

First application

Statistical analysis on public texts

Obtain a public domain text

Gutenberg project
Wikipedia (very large)
public corpora (e.g.,
https://en.wikipedia.org/wiki/Brown_Corpus)

Possible tasks

Which language?
Which genre?
Which author?

Thiemann Energy Informatics 15 Feb 2016 7 / 17

https://en.wikipedia.org/wiki/Brown_Corpus

On the tasks

Which Language?

Every language has a characteristic letter frequency

https://en.wikipedia.org/wiki/Letter_frequency

Also digrams and trigrams may be analyzed

Which genre / author?

Analyze usage patterns of common words

https://en.wikipedia.org/wiki/Most_common_words_

in_English

Thiemann Energy Informatics 15 Feb 2016 8 / 17

https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Most_common_words_in_English
https://en.wikipedia.org/wiki/Most_common_words_in_English

On the tasks

Which Language?

Every language has a characteristic letter frequency

https://en.wikipedia.org/wiki/Letter_frequency

Also digrams and trigrams may be analyzed

Which genre / author?

Analyze usage patterns of common words

https://en.wikipedia.org/wiki/Most_common_words_

in_English

Thiemann Energy Informatics 15 Feb 2016 8 / 17

https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Most_common_words_in_English
https://en.wikipedia.org/wiki/Most_common_words_in_English

On letter frequency and cryptanalysis

Background: substitution cipher

Plain text and cipher text (after encryption) are drawn from
the same set of symbols

A (monoalphabetic) substitution cipher is a one-to-one
mapping between symbols

Particularly simple example: Caesar’s cipher, which rotates
letters by 13 (how would you decrypt?)

Thiemann Energy Informatics 15 Feb 2016 9 / 17

Example: Caesar’s cipher

Caesar’s substitution

symbols abcdefghijklmnopqrstuvwxyz

substitutes nopqrstuvwxyzabcdefghijklm

Application

plain text we had goldfish and they circled around

cipher text jr unq tbyqsvfu naq gurl pvepyrq nebhaq

Thiemann Energy Informatics 15 Feb 2016 10 / 17

Example: Caesar’s cipher

Caesar’s substitution

symbols abcdefghijklmnopqrstuvwxyz

substitutes nopqrstuvwxyzabcdefghijklm

Application

plain text we had goldfish and they circled around

cipher text jr unq tbyqsvfu naq gurl pvepyrq nebhaq

Thiemann Energy Informatics 15 Feb 2016 10 / 17

On letter frequency and cryptanalysis

Breaking a substitution cipher

Assumptions:

language is known
cipher text is sufficiently long

Analyze letter frequency

Match with letter frequency table for the language

Compute inverse substitution

Thiemann Energy Informatics 15 Feb 2016 11 / 17

Which substitution is the best match?

To assess different substitutions, we need to compute the
distance to the language’s letter frequency.

The standard distance function to minize computes the
square root of the squares of the differences:

d(x̄ , ȳ) =

√∑
i

(xi − yi)2

Thiemann Energy Informatics 15 Feb 2016 12 / 17

Distance in Python

Code

def distance(xs , ys):

s = 0

for x, y in zip (xs , ys):

s += (x - y) * (x - y)

return math.sqrt(s)

Explanation

zip (xs, ys) creates a list of pairs of corresponding
entries of lists xs and ys

for x, y in sequence

loops over the entries in sequence, which must be pairs,
and binds x and y to the first and second component of each
pair, respectively

Thiemann Energy Informatics 15 Feb 2016 13 / 17

Useful Python I/O idioms

Thiemann Energy Informatics 15 Feb 2016 14 / 17

Python IO

Reading a file naively

prepare to ’r’ead from file ’filename ’

f = open(’filename ’, ’r’)

s = f.read()

process s = content of file

f.close ()

Reads all of a file named “filename” into the string s

Then work with s

Problems:

This will consume a lot of memory if the file is big
It’s easy to forget to close the file
No error handling

Thiemann Energy Informatics 15 Feb 2016 15 / 17

Python IO

Reading a file naively

prepare to ’r’ead from file ’filename ’

f = open(’filename ’, ’r’)

s = f.read()

process s = content of file

f.close ()

Reads all of a file named “filename” into the string s

Then work with s

Problems:

This will consume a lot of memory if the file is big
It’s easy to forget to close the file
No error handling

Thiemann Energy Informatics 15 Feb 2016 15 / 17

More robust file handling

Reading a file (recommended)

with open (’filename ’, ’r’) as f:

for line in f:

process f line -by-line

line is a string

Advantages

No memory issues as file is read line-by-line

Automatic close when leaving with

(Hidden) error handling if there is a problem with the file

Disadvantage

Have to deal with file contents one line at a time

Thiemann Energy Informatics 15 Feb 2016 16 / 17

More robust file handling

Reading a file (recommended)

with open (’filename ’, ’r’) as f:

for line in f:

process f line -by-line

line is a string

Advantages

No memory issues as file is read line-by-line

Automatic close when leaving with

(Hidden) error handling if there is a problem with the file

Disadvantage

Have to deal with file contents one line at a time

Thiemann Energy Informatics 15 Feb 2016 16 / 17

More robust file handling

Reading a file (recommended)

with open (’filename ’, ’r’) as f:

for line in f:

process f line -by-line

line is a string

Advantages

No memory issues as file is read line-by-line

Automatic close when leaving with

(Hidden) error handling if there is a problem with the file

Disadvantage

Have to deal with file contents one line at a time

Thiemann Energy Informatics 15 Feb 2016 16 / 17

Example: the word count utility

wc counts lines , words , and characters in a file

def exe(name):

initialization

lcount = 0 # line count

wcount = 0 # word count

ccount = 0 # character count

with open (name , ’r’) as f:

for line in f:

process one line

lcount += 1

ccount += len(line)

for words in line.split ():

wcount += 1

return (lcount , wcount , ccount)

Thiemann Energy Informatics 15 Feb 2016 17 / 17

End Part III

Thiemann Energy Informatics 15 Feb 2016 18 / 17

	Motivation
	Useful Python I/O idioms

