Exercises for the Lecture

Graph Theory

Winter 2014/15

Blatt 1 (10 points)

Task 1:

Consider the following adjacency matrices of two digraphs.

	(0	0	1	0	0	1	0	1	0	0	1
	0	1	1	0	0		0	0	0	1	0
$G_1 =$	1	0	0	0	0	$G_2 =$	0	2	0	1	1
	0	1	1	1	0		0	0	0	0	0
	$\left(0 \right)$	0	1	1	0/	(0	0	0	2	0/

- 1. Draw graphs G_1 and G_2 .
- 2. Which of the following features can be observed?
 - (a) loop-free
 - (b) parallel edges
 - (c) anti-parallel edges
 - (d) simple
- 3. Represent these graphs as
 - (a) incidence matrix,
 - (b) adjacency list,
 - (c) on a tape of a Turing machine.

Task 2:

Line graphs and graph isomorphism. A *d*-regular undirected graph *H* consists only of nodes $u \in V$ with $d_H(u) = d$. Prove or disprove:

- 1. For every 2-regular simple undirected graph H we have $H \cong L(H)$.¹
- 2. For every 3-regular simple undirected graph H we have $H \cong L(H)$.

5 points

5 points

 $^{{}^{1} \}widetilde{=}$ means: is isomorphic to