Freiburg, 12.11.2014 Discussion 19.11.2014

Exercises for the Lecture Graph Theory Winter 2014/15 Blatt 2 (10 points)

Task 1:

1. Given the following digraph as an adjacency matrix, decide whether the digraph is *acyclic* by applying the *topological sorting* algorithm from in the lecture! What is the topological sorting produced by this algorithm?

	$\left(0 \right)$	0	1	0	0	0	0	0	$0 \rangle$
	0	0	1	0	0	0	1	0	0
	0	0	1	0	1	0	0	0	0
	0	0	1	0	1	0	0	0	0
$G_1 =$	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	2	0	0	0
	0	0	0	0	0	0	0	0	0
	$\backslash 1$	2	0	1	1	0	0	0	0/

- 2. Present a directed graph G with n nodes, which possesses the maximal amount of different topological sorting. Compute the number of topological sortings and prove the maximality.
- 3. Find a directed graph G with n nodes, with minimal amount of different topological sorting. How many topological sortings exist in your graph?

Task 2:

5 points

- 1. Show that every path p in an undirected graph G has a corresponding path \tilde{p} in L(G) where the edges of p are nodes in \tilde{p} .
- 2. Show how the number of *connected components* in an undirected graph G relates to the *connected components* in L(G) and the number of nodes v in G without neighbors.

5 points