
Freiburg, 07.01.2015 Discussion 14.01.2015

Exercises for the Lecture Graph Theory Winter 2014/15 Blatt 5 (10 points)

Task 1:

10 points

1. Look at the graph. Apply the algorithm of Kruskal and mark the edges which are added to the *Minimum Spanning Tree*. Also give the order in which the edges are chosen.

Algorithm 1 Algorithm of Prim

Input: A non-empty connected weighted graph with vertices V and edges E **Output:** U and T describe a minimal spanning tree

1: $T \leftarrow \phi$;

- 2: $U \leftarrow v_1$;
- 3: while $U \neq V$ do
- 4: Let (u, v) be the edge with lowest cost such that $u \in U$ and $v \in V U$;
- 5: $T \leftarrow T \cup (u, v);$
- 6: $U \leftarrow U \cup v$;
- 7: end while
 - 2. Apply the algorithm of Prim to the given graph and discuss the different output.
 - 3. Assume negative edge costs are allowed and define a minimum spanning graph as the subgraph connecting all nodes of each connecting component with minimum edge weight. Is every minimum spanning graph still a forest? Prove your answer!
 - 4. Give an algorithm that produces the minimum spanning graph of a graph with negative edge costs allowed! Hint: Modify Kruskal's or Prim's algorithm.