Mobile Ad Hoc Networks 4th Week (Part I) 09.05.2007

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Faisal Aslam and Chia Ching Ooi

aslam@informatik.uni-freiburg.de ooi@informatik.uni-freiburg.de

Responsibilities of MAC

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Facilitate single-hop communication

- No routing here
- Some broadcast!

Sharing the medium

- May perform *carrier sense*
 - No one else is sending
 - Not all MAC protocol use it
- May exchange control packets
 - Tell other I am going to send
 - Inform receiver
- What if collision occurs?
 - · Keep sending might not be a good idea!

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Error detection and correction

- Cyclic redundancy checks, Parity schemes

Flow control

• Do not send fast enough

Power management

- Manage power while doing above all
- Sleep management
- Reduce idle listening
 - Idle listening state, a sensor node continuously listens to the medium to look for any possible traffic when nothing is being send.

Mobility issues

09.05.2007 4th Week (Part I) - 4

Schedule- vs. contentionbased MACs

- Schedule-based MAC
 - A schedule exists, regulating which participant may use which resource at which time (TDMA component)
 - Typical resource: frequency band in a given physical space (with a given code, CDMA)
 - Schedule can be *fixed* or computed on demand
 - Usually: mixed difference fixed/on demand is one of time scales
 - Usually, collisions, overhearing, idle listening no issues
 - Disadvantage: time synchronization!
- Contention-based protocols
 - Risk of colliding packets is deliberately taken
 - Hope: coordination overhead can be saved, resulting in overall improved efficiency
 - Mechanisms to handle/reduce probability/impact of collisions required
 - Usually, *randomization* used somehow

Mobile Ad Hoc Networks

ALOHA

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> The simplest possible medium access protocol:

Just talk when you feel like it (no carrier sense)

If message collide then try again

Formally: Whenever a packet should be transmitted, it is transmitted immediately

>Introduced in 1985 by Abrahmson et al., University of Hawaii

➢Goal: Use of satellite networks

Jser		
А		
в		
С		
D		9
Е		
	Time Packets are transmitted at arbitrary times	

ALOHA – Analysis

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

>ALOHA advantages

- Trivially simple
- No coordination between participants necessary

>ALOHA disadvantages

- Collisions can and will occur sender does not check channel state
- Sender has no (immediate) means of learning about the success of its transmission – link layer mechanisms (ACKs) are needed
 - ACKs can collide as well $\ensuremath{\textcircled{\sc o}}$

A slight improvement: Slotted ALOHA

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

>ALOHA's problem: Long vulnerability period of a packet

Reduce it by introducing time slots – transmissions may only start at the start of a slot

- Slot synchronization is assumed to be "somehow" available

Result: Vulnerability period is halved, throughput is doubled

Carrier Sense Multiple Access With Collision Detection

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Carrier Sense Multiple Access (CSMA)

- Sense the medium
- If not free
 - wait for till it is free
 - Transmit

Carrier Sense Multiple Access With Collision Detection (CSMA/CD)

- Sense the medium
- If not free
 - Backoff random amount of time
 - Check medium again,
 - if free then transmit.
 - Otherwise Backoff again

Problem for MAC protocol

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

In any wireless communication interface is at receiver and not at sender

Hidden Terminal

- Node A is sending data to B
- Node C perform carrier sense
 - Finds medium free.
- Node C start sending to B
- B had collision

A – B

- Node B is sending data to A
- Node C performs carrier sense
 - Finds medium occupied
 - · Hence node C do not send data to D
- Sending data to D was safe

Multiple Access with Collision Avoidance (MACA)

- Sender B asks receiver C whether C will be able to receive a transmission Request to Send (RTS)
- "A" overhear B's RTS. It waits until Data should have been recieved.
- Receiver C if agrees to receive, sends out a Clear to Send (CTS)
- "D" overhear CTS. It wait until data should have been received. CTS has length of data specified inside it.

MACA and Hidden Terminal Problem

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

>MACA Solves Hidden terminal Problem?

-Yes during data but not during RTC/CTS

-In figure "C" has become hidden terminal and cannot hear first RTS due to CTS. It is because of this later CTS collide with data.

MACA and Exposed Terminal Problem

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- ➤ "A" overhear RTS.
- ➤ Waits until CTS
- Medium busy because of the Data.
- Based on information in RTS.

-"A" now know that it could send during data transmission.

>Exposed Terminal solved?

-(Answer in Exercise!)

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

09.05.2007 4th Week (Part I) - 14

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

>MANET nodes are battery powered

- Energy conservation
- Efficient power utilization

Principles of power conservation

- Collisions avoidance: retransmission is expensive
- Transceiver modes: Standby mode vs. Active mode
- Lower power mode: based on distance to destination node

Protocol implementation

- Power management: alternating sleep and wake cycles
- Power control: variation in transmission power

Motivation

Model	Transmit	Receive	Standby
GEC Plessey DE6003 2.4 GHz	1.8 W	0.6 W	0.05 W
Lucent's 15 dBm 2.4 GHz Wavelan radio	1.75 W	1.475W	0.08 W

09.05.2007 4th Week (Part I) - 16

PAMAS

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻ Raghavendra & Singh (1998)

- Power Aware Medium Access Control with Signaling
- PAMAS = MACA + Separate Signaling Channel

Signaling and data channel

- Combine busy tone with RTS/CTS
- Results in detailed overhearing avoidance, does not address idle listening

Sleep and awake modes

 Node powers off its data channel if busy tones is heard and it is neither the sender nor the receiver of the transmission

^{09.05.2007 4}th Week (Part I) - 18

PAMAS

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

➢ Procedure

- Node A transmits RTS on signaling channel, does not sense channel
- Node B receives RTS, sends CTS on signaling channel if it can receive and does not know about ongoing transmissions
- B sends busy tone on signaling channel as it starts to receive data

09.05.2007 4th Week (Part I) - 19

Mobile Ad Hoc Networks

^{09.05.2007 4}th Week (Part I) - 20

> When does a node enter the power-off state?

- Condition 1: The node has no packets for transmission and if a neighbor begins transmitting.
- Condition 2: A neighbor node is transmitting and another is receiving packets at the same time (data channel is busy, it cannot transmit or receive a packet)

Duration of power-off state

- Duration field in RTS frame
- Probe message on signaling channel

PCM

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻Jung & Vaidya (2002)

- Power Control MAC

➢ Based on BASIC power control protocol (Gomez et al, 2001)

- Varied transmission power
 - Max. Power: RTS/CTS
 - Min. Power required: Data & ACK

Asymmetric situation causes collision

 Node C starts transmitting to D as it does not sense transmission between A and B

Solution: BASIC Protocol

09.05.2007 4th Week (Part I) - 24

Transmit Power Level

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻ Method 1:

$$Pt_{i_}des = \max\{\frac{RX_Des}{G_{ij}}, \frac{SIR_Des \cdot Pn_D_{j}}{G_{ij}}\}$$

- Transmit Power of RTS is indicated in RTS
- Gain can be computed based on both sender and receiver power of RTS
- Signal-to-noise level is considered to compute transmit power level for DATA

≻Method 2:

$$p_{desired} = \frac{p_{max}}{p_r} \times Rx_{thresh} \times c$$

- CTS is sent at max. transmit power

A Carrier Sensing vs. Transmission Range

Drawback of BASIC Protocol

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Mobile Ad Hoc Networks

09.05.2007 4th Week (Part I) - 27

- > RTS-CTS are transmitted at maximum power level
- DATA are transmitted at minimum necessary power level BUT at the maximum level periodically
- > ACK are transmitted with minimum necessary power
- Intervals between two adjacent electricity pulses are slightly shorter than EIFS

PCM

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Highlights:

- Comparable performance to IEEE 802.11
- Less energy consumed than IEEE 802.11

Solve drawback of *BASIC* partly

- Periodic use of Max Power for DATA
- But does not completely prevent collision (collision with DATA)

Drawbacks

- Accurate estimation of received packet signal strength (e.g. fading, shadowing makes it difficult)
- Difficult implementation of frequent change of transmit power level

Thank you!

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer

Mobile Ad Hoc Networks

Faisal Aslam and Chia Ching Ooi

4th Week (Part I) 09.05.2007