Mohile Ad Hoc Networks Theory of Interferences, Trade-Offs between Energy, **Congestion and Delay** 5th Week 14.05.-18.05.2007 **Christian Schindelhauer** CoNe Freiburg schindel@informatik.uni-freiburg.de

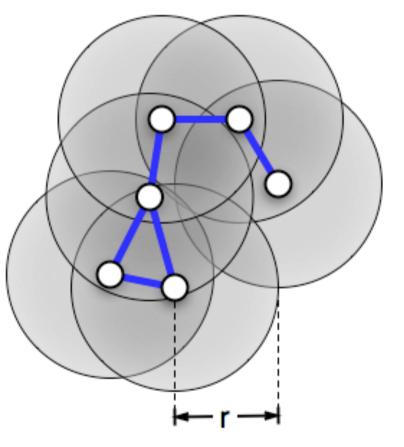
University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer

Unit Disk Graphs

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

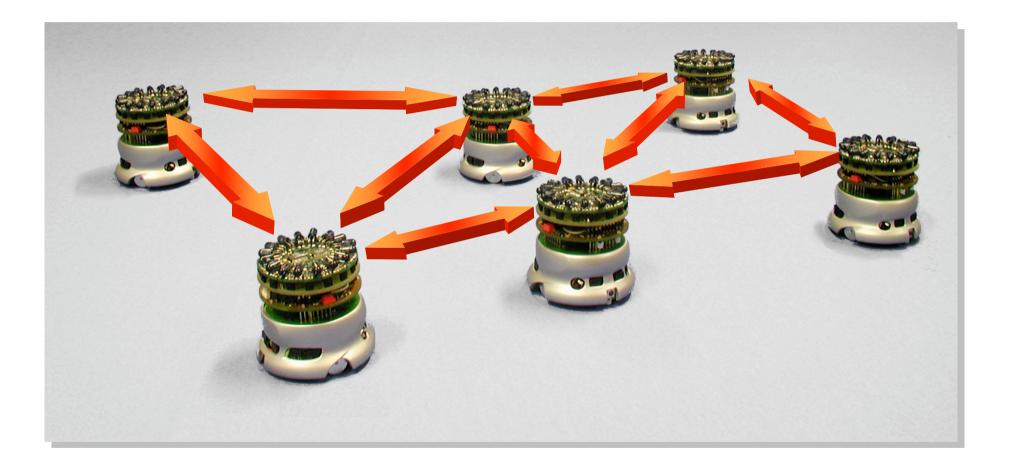
Motivation:

- Received Signal Strength decreases proportionally to d^{-γ},
 - where γ is the path loss exponent
- Connections only exists if the signal/noise ratio is beyond a threshold


Definition

- Given a finite point set V in \mathbf{R}^2 or \mathbf{R}^3 ,
- then a Unit Disk Graph with radius r G=(V,E) of the point set is defined by the undirected edge set:

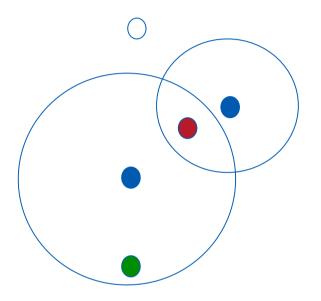
 $E = \{\{u, v\} \mid ||u, v||_2 \le r\}$


– where $||u,v||_2$ is the Euclidean distance:

$$||u,v||_2 = \sqrt{(u_x - v_x)^2 + (u_y - v_y)^2}$$

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

A Simple Physical Network Model


University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Homogenous Network of

– n radio stations $s_1,..,s_n$ on the plane

➢ Radio transmission

- One frequency
- Adjustable transmission range
 - Maximum range > maximum distance of radio stations
 - Inside the transmission area of sender: clear signal or radio interference
 - Outside: no signal
- Packets of unit length

Mobile Ad Hoc Networks

The Routing Problem

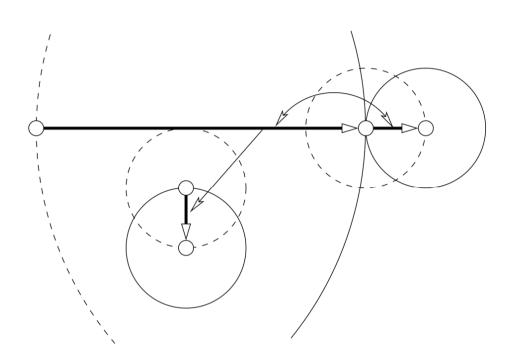
University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻Given:

- n points in the plane, $V=(v_1,...,v_n)$
 - representing mobile nodes of a mobile ad hoc network
- the complete undirected graph G = (V,E) as possible communication network
 - representing a MANET where every connection can be established

Routing problem (multi-commodity flow problem):

- f : V × V \rightarrow N, where f(u,v) packets have to be sent from u to v, for all u,v \in V
- Find a path for each packet of this routing problem in the complete graph


The union of all path systems is called the Link Network or Communication Network

Formal Definition of Interference

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Let D_r(u) the disk of radius u with center u in the plane
 Define for an edge e={u,v}
- $D(e) = D_r(u) \cup D_r(v)$
- The set of edges interfering with an edge e = {u,v} of a communication network N is defined as:

$Int(e) := \{e' \in E(N) \setminus \{e\} \mid u \in D(e') \text{ or } v \in D(e')\}$

➤ The Interference Number of an edge is given by |Int(e)|
 ➤ The Interference Number of the Network is max{|Int(e} | e ∈ E}

Formal Definition of Congestion

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> The Congestion of an edge e is defined as:

 $C_{\mathcal{P}}(e) := \ell(e) + \sum \ell(e')$ $e' \in Int(e)$

> The Congestion of the path system P is defined as

$$C_{\mathcal{P}}(V) := \max_{e \in E_{\mathcal{P}}} \{ C_{\mathcal{P}}(e) \}$$

> The Dilation D(P) of a path system is the length of the longest path.

Energy

The energy for transmission of a message can be modeled by a power over the distance d between sender and transceiver

- Two energy models:
 - Unit energy accounts only the energy for upholding an edge
 - Idea: messages can be aggregated and sent as one packet

U-Energy_{$$\mathcal{P}$$}(V) := $\sum_{e \in E_{\mathcal{P}}(N)} |e|^2$

- Flow Energy Model: every message is counted separately

$$\text{F-Energy}_{\mathcal{P}}(V) := \sum_{e \in E_{\mathcal{P}}(N)} \ell(e) |e|^2$$

Mobile Ad Hoc Networks

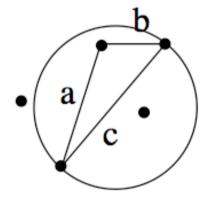
➤ Theorem 1

Consider a radio network N in d-dimensional space $(d \in \{2,3\})$ and a path system \mathcal{P} for a routing problem f with dilation D and congestion C. Let T be its optimal routing time. Then it holds for $c_2 = 6$ and $c_3 = 20$ that

$$T \geq \max\left\{\frac{C}{2c_d}, D\right\} = \Omega(C+D) .$$

Theorem 2

Consider a radio network N = (V, E) and a path system \mathcal{P} of size n for some routing problem f with maximum interference number I, dilation D, and congestion C. Let T be its optimal routing time, when the path system \mathcal{P} is used. There is an online routing protocol that needs routing time $O(C + D \cdot I \cdot \log(n \cdot I))$, with probability at least $1 - n^{-c}$ for any constant c.

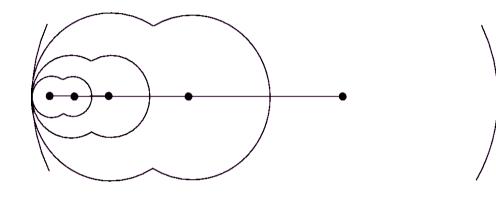


Minimizing Energy

➤ Theorem

The unique paths defined by a minimum spanning tree result in an optimal path system for a radio network $N = (V, E), V \subseteq \mathbb{R}^d$ for any d, with respect to the unit energy.

Definition Gabriel Graph


> Theorem

For a given vertex set V and a routing problem f, the shortest paths between vertices $u, v \in V$ with $f(u, v) \neq 0$ of the Gabriel Graph of V form an optimal path system for a radio network with respect to the flow energy.

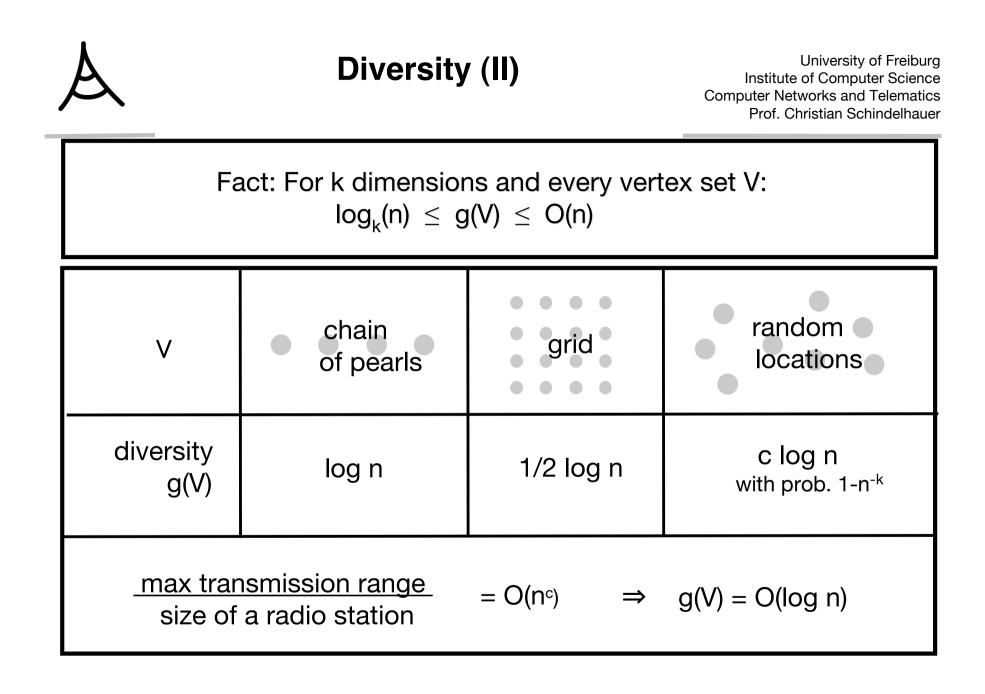
Mobile Ad Hoc Networks

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Interference Number for n nodes = n-1

A Measure for the Ugliness of Positions

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer


> For a network G=(V,E) define the Diversity as

$$g(V) := |\{m \mid \exists u, v \in V : \lfloor \log |u, v| = m \rfloor\}|$$

> Properties of the diversity:

$$-g(V)=\Omega(\log n)$$

$$-g(V)=O(n)$$

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Maximum number of packets interfering at an edge

$$C_{\mathcal{P}}(V) := \max_{e \in E_{\mathcal{P}}} \left\{ \ell(e) + \sum_{e' \in \text{Int}(e)} \ell(e') \right\}$$

Sum of energy consumed in all routes

Energy_{$$\mathcal{P}$$}(V) := $\sum_{e \in E_{\mathcal{P}}(N)} \ell(e) |e|^2$.

Maximum number of hops (diameter of the network)

Mobile Ad Hoc Networks

Congestion

Energy

Dilation

Thank you!

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Mobile Ad Hoc Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

5th Week 14.05.2007