Mobile Ad Hoc Networks **Trade-Offs and Topology Control** 6th Week

14.05.-21.05.2007

Christian Schindelhauer schindel@informatik.uni-freiburg.de

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer

A Simple Physical Network Model

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Homogenous Network of

– n radio stations $s_1,..,s_n$ on the plane

➢ Radio transmission

- One frequency
- Adjustable transmission range
 - Maximum range > maximum distance of radio stations
 - Inside the transmission area of sender: clear signal or radio interference
 - Outside: no signal
- Packets of unit length

Mobile Ad Hoc Networks

The Routing Problem

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻Given:

- n points in the plane, $V=(v_1,...,v_n)$
 - representing mobile nodes of a mobile ad hoc network
- the complete undirected graph G = (V,E) as possible communication network
 - representing a MANET where every connection can be established

> Routing problem (multi-commodity flow problem):

- f : V × V \rightarrow N, where f(u,v) packets have to be sent from u to v, for all u,v \in V
- Find a path for each packet of this routing problem in the complete graph

The union of all path systems is called the Link Network or Communication Network

Formal Definition of Interference

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Let D_r(u) the disk of radius u with center u in the plane
- > Define for an edge $e=\{u,v\}$ D(e) = D_r(u) \cup D_r(v)
- The set of edges interfering with an edge e = {u,v} of a communication network N is defined as:

$Int(e) := \{ e' \in E(N) \setminus \{e\} \mid u \in D(e') \text{ or } v \in D(e') \}$

➤ The Interference Number of an edge is given by |Int(e)|
 ➤ The Interference Number of the Network is max{|Int(e} | e ∈ E}

Formal Definition of Congestion

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> The Congestion of an edge e is defined as:

 $C_{\mathcal{P}}(e) := \ell(e) + \sum \ell(e')$ $e' \in Int(e)$

> The Congestion of the path system P is defined as

$$C_{\mathcal{P}}(V) := \max_{e \in E_{\mathcal{P}}} \{ C_{\mathcal{P}}(e) \}$$

> The Dilation D(P) of a path system is the length of the longest path.

Energy

The energy for transmission of a message can be modeled by a power over the distance d between sender and transceiver

- ≻Two energy models:
 - Unit energy accounts only the energy for upholding an edge
 - Idea: messages can be aggregated and sent as one packet

U-Energy_{$$\mathcal{P}$$}(V) := $\sum_{e \in E_{\mathcal{P}}(N)} |e|^2$

- Flow Energy Model: every message is counted separately

$$\text{F-Energy}_{\mathcal{P}}(V) := \sum_{e \in E_{\mathcal{P}}(N)} \ell(e) |e|^2$$

Mobile Ad Hoc Networks

A Measure for the Ugliness of Positions

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> For a network G=(V,E) define the Diversity as

$$g(V) := |\{m \mid \exists u, v \in V : \lfloor \log |u, v| = m \rfloor\}|$$

> Properties of the diversity:

- $-g(V)=\Omega(\log n)$
- -g(V)=O(n)

Maximum number of packets interfering at an edge

$$C_{\mathcal{P}}(V) := \max_{e \in E_{\mathcal{P}}} \left\{ \ell(e) + \sum_{e' \in \text{Int}(e)} \ell(e') \right\}$$

Sum of energy consumed in all routes

Energy_{$$\mathcal{P}$$}(V) := $\sum_{e \in E_{\mathcal{P}}(N)} \ell(e) |e|^2$.

Maximum number of hops (diameter of the network)

Mobile Ad Hoc Networks

Congestion

Energy

Dilation

> Is it possible to optimize energy and dilation at the same time?

Scenario:

- n+1 equidistant nodes $u_0, ..., u_n$ on a line with coordinates 0,d/n, 2d/n,...,d

- Demand: W packets from u_0 to u_n
- Optimal path system for energy:
 - send all packets over path $u_0, ..., u_n$
 - Dilation: n

-Unit-Energy =
$$\sum_{i=1}^{n} \left(\frac{d}{n}\right)^2 = \frac{d^2}{n}$$

Optimal path system for dilation:

- send all packets over path u₀,u_n
- Dilation: 1

- Unit-Energy =
$$d^2$$

- Flow-Energy =
$$\sum_{i=1}^{n} W\left(\frac{d}{n}\right)^2 = \frac{d^2W}{n}$$
 - Flow-Energy

> Theorem: In this scenario we observe for all path systems:

Mobile Ad Hoc Networks

21.05.2007 6th Week - 9

 $= d^2 W$

Mobile Ad Hoc Networks

- > Is it possible to optimize congestion and dilation at the same time?
- Scenario:
 - A $\sqrt{n} \times \sqrt{n}$ grid of n nodes (for a square number n)
 - Demand: W/n² packets between each pair of nodes

Optimal path system w.r.t. dilation

- send all packets directly from source to target
- Dilation: 1
- Congestion: $\Theta(W)$
 - if the distance from source to target is at least (3/4) n, then the communication disks cover the grid
 - So, a constant fraction of all W messages interfere with each other
- Good path system w.r.t. congestion
 - send all packets on the shortest path with unit steps
 - first horizontal and then vertical
 - Congestion: $O(W/\sqrt{n})$
 - On all horizontal lines at most $O(W/\sqrt{n})$ packets can interfere each other
 - Influence of horizontal on vertical lines increases the congestion by at most a factor of 2.
 - Dilation: \sqrt{n}

Mobile Ad Hoc Networks

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O<

A Congestion versus Dilation

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- > Is it possible to optimize congestion and dilation at the same time?
- > Scenario:_
 - A $\sqrt{n} \times \sqrt{n}$ grid of n nodes (for a square number n)
 - Demand: W/n² packets between each pair of nodes
- Good path system w.r.t. dilation
 - Build a spanning tree in H-Layout with diameter O(log n)
 - Dilation: O(log n)
 - Congestion: $\Theta(W (\log n))$
- Theorem
 - For any path system in this scenario we observe

Congestion \times Dilation $= \Omega(W)$

Proof strategy:

- Vertically split the square into three equal rectangles
- Consider only 1/9 of the traffic from the leftmost to the rightmost rectangle
- Define the communication load of an area
- Proof that the communication load is a lower bound for congestion
- Minimize the communication load for a given dilation between the rectangles

Theorem

Given the grid vertex set G_n in *d*-dimensional space $(d \in \{2,3\})$ with traffic W then for every path system \mathcal{P} the following trade-off between dilation $D_{\mathcal{P}}(G_n)$ and congestion $C_{\mathcal{P}}(G_n)$ exists:

 $C_{\mathcal{P}}(G_n) \cdot (D_{\mathcal{P}}(G_n))^{d-1} \ge \Omega(W)$.

Tradeoff between Dilation and Congestion

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- n sites on a grid
- Between each pair of sites demand of W/n² packets

A Congestion versus Energy

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Is it possible to optimize congestion and energy at the same time?

Scenario:

- The vertex set $U_{\alpha,n}$ for $a \in [0,0.5]$ consists of two horizontal parallel line graphs line graphs with n^{α} blue nodes on each line
- Neighbored (and opposing) blue vertices have distance Δ/n^{α}
- Vertical pairs of opposing vertices of the line graphs have demand W/n^α
- ➤ Then, there are n other nodes equdistantly placed between the blue nodes with distance ∆/n vertices are equidistantly placed between the blue nodes
- Best path system w.r.t. Congestion
 - One hop communication between blue nodes: Congestion: $O(W/n^{\alpha})$
 - Unit-Energy: : $\Omega(\Delta^2 n^{-\alpha})$
 - Flow-Energy: $\Omega(W \Delta^2 n^{-\alpha})$

Best path w.r.t Energy:

- U-shaped paths
- Unit-Energy: $O(\Delta^2 n^{-1})$
- Flow-Energy: $O(\Delta^2 n^{-1} W)$
- Congestion: $\Omega(W)$
- > Choose $\alpha = 1/3$

Energy and Congestion are incompatible

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Theorem 1 There exists a vertex set V with a path system minimizing congestion to C^* , and another path system optimizing unit energy by U-Energy^{*} and minimal flow energy by F-Energy^{*} such we have for any path system \mathcal{P} on this vertex set V we have

> $C_{\mathcal{P}}(V) \geq \Omega(n^{1/3}C^*) \quad or$ $U\text{-}Energy_{\mathcal{P}}(V) \geq \Omega(n^{1/3}U\text{-}Energy^*) ,$ $C_{\mathcal{P}}(V) \geq \Omega(n^{1/3}C^*) \quad or$ $F\text{-}Energy_{\mathcal{P}}(V) \geq \Omega(n^{1/3}F\text{-}Energy^*) .$

Mobile Ad Hoc Networks

Incompatibility of Congestion and Energy

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

 n^{1/3} blue sites One packet demand between all vertical pairs of blue sites 				
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	any link network	
Congestion	n ^{1/3}	C* = O(1)	C ≥ Ω(n¹/3C*)	either
Energy	E*=O(1/n)	O(1/n ^{2/3})	or	E ≥ Ω(n ^{1/3} E*)

Mobile Ad Hoc Networks

21.05.2007 6th Week - 17

Topology Control in Wireless Networks

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- > Topology control: establish and maintain links
- Routing is based on the network topology
- Geometric spanners as network topologies

Yao-Graph

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Yao-Graph

- Choose nearest neighbor in each sector
- c-spanner, i.e. constant stretch-factor
- distributed construction

c-Spanner [Chew86]

c-spanner: for every pair of nodes u, vthere exists a path P s.t. $||P|| \le c \cdot ||u, v||$

Spanner Graphs and Yao-Graphs

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Definition

- A c-Spanner is a graph where for every pair of nodes u,v there exists a path P s.t.
 - $\|P\| \leq c \cdot \|u,v\|.$

Motivation:

- Short paths
- Energy optimal paths

Example of a Spanner-Graph:

- Yao-graph

Definition Yao-Graph (Theta-Graph)

- Given a node set V
- Define for each node k sectors $S_1(u)$, $S_2(u)$, ..., $S_k(u)$ of angle $\theta = 2 \pi/k$ with same orientation
- The Yao-Graph consists of all edges $\begin{array}{l} \mathsf{E} = (\mathsf{u},\mathsf{v} \mid exists \; i \in \{1,..,k\} \!\!\!: \mathsf{v} \in S_i\!(\mathsf{u}) \text{ and for all} \\ \mathsf{v}' \; \in S_i\!(\mathsf{u}) \!\!: \|\mathsf{u},\mathsf{v}'\| \geq \|\mathsf{u},\mathsf{v}\| \, \} \end{array}$

Weaker Spanning

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Weak-Spanner [FMS97]

for every pair of nodes u,vexists a path inside the disk $C(u, c \cdot ||u,v||)$

...sufficient for allowing routing which approximates minimal congestions by a factor of O(Int(G) g(V))[Meyer auf der Heide, S, Volbert, Grünewald 02]

Power-Spanner [LWW01, GLSV02]

for every pair of nodes u, vexists path P s.t. $|P| \le c \cdot |P_{opt}|$ $|P| = \sum |v_i, v_{i+1}|^d$

...approximates energy-optimal path-system

Spanners, Weak Spanners, Power Spanners

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻Theorem

– Every c-Spanner is a c-weak spanner.

≻Theorem

– Every c-weak-Spanner is a c'-power Spanner when $d \ge 2$.

>Proof:

- straightforward for d>2
- involved construction for d=2

Koch-Curves: Koch 0, Koch 1, Koch 2,...

> Theorem

– The Koch Curve is not a c-Spanner

≻Theorem

– The Koch Curve is a weak 1-Spanner.

only symmetric edges not a spanner, nor weak spanner, yet power-spanner

Spanner, Weak Spanner, Power Spanner

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Every c-Spanner is a weak c-Spanner

> Every c-Spanner is a (c^d,d)-Power Spanner

≻Every weak c-Spanner is a (c',d)-Power Spanner for d≥2

There are weak Spanners that are no Spanners

(e.g. the Koch Curve is no c-Spanner but a weak 1-Spanner)

> There are Power Spanners that are no Weak Spanners

> The circle is scaled such that $|v_1 - v_n| = 1$

- >Consider G = (V,E) with V = $\{v_1,...,v_n\}$ and E = $\{(v_i,v_{i+1}) | i=1,...,n-1\}$
- ≻G is a (c,d)-Power Spanner:

$$\mathsf{Energy}(\mathsf{P}) = \sum_{i=1}^{\mathsf{n}-1} (1/i)^{\mathsf{d}} \le \sum_{i=1}^{\infty} (1/i)^{\mathsf{d}} = \mathcal{O}(1) \qquad {}^{(\mathsf{d}>1)}$$

$$\forall c > -1: \quad \sum_{i=1}^n i^c = \Theta(n^{c+1}) \qquad \forall c < -1: \quad \sum_{i=1}^n i^c = \mathcal{O}(1)$$

Mobile Ad Hoc Networks

21.05.2007 6th Week - 26

Power Spanners and Weak Spanners

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

>
$$|v_i - v_{i+1}| = 1/i$$
 and $|v_1 - v_n| = 1$
>G = (V,E) with V = { $v_1,...,v_n$ }

≻G is a (c,d)-Power Spanner

 G is not a Weak Spanner:
 Radius of the circle depends on the Euclidean length of the chain:

$$\sum_{i=1}^{n-1} \frac{1}{i} = \Theta(\log n)$$

$$\ln n \leq \sum_{i=1}^n \frac{1}{i} \leq 1 + \ln n$$

21.05.2007 6th Week - 28

The Symmetric Yao Graph (SymmY)

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- SymmY is not a c-Spanner
- ➤ Worst case construction →

The Hierarchical Layer Graph (HLG)

University of Freiburg Institute of Computer Science **Computer Networks and Telematics** Prof. Christian Schindelhauer

➢ Basic Ideas:

- many short edges on lower layers \rightarrow energy efficiency
- few long edges on higher layers \rightarrow connectivity
- >layers = range classes, assigned to power levels

> node with the highest priority on layer 1 becomes L₂ node ...and dominates L₁ nodes

```
>L<sub>2</sub> node connects to other L<sub>2</sub> nodes
```


Radii of the HL Graph

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> layer-(i-1) publication radius > layer-i domination radius: $\alpha > \beta$

> layer-i edges are established in between

> The HL Graph is a c-Spanner, if $\alpha > 2\beta$ / (β -1)

> The interference number of the HLG is bounded by O(g(V))

g(V) = Diversity of the node set Vg(V) = O(log n) for nodes in random positions with high probability

A c-Spanner contains a path system with load O(g(V) · C*)

 C^* = congestion of the congestion-optimal path system

> The HLG contains a path system P with congestion $O(g(V)^2 \cdot C^*)$

i.e. P approximates the congestion-optimal path system by a factor of O(log² n) for nodes in general position

Thank you!

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Mobile Ad Hoc Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

6th Week 21.05.2007