# Mobile Ad Hoc Networks Network Coding and Xors in the Air

# 7th Week 06.06.-09.06.2007



Christian Schindelhauer schindel@informatik.uni-freiburg.de

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer



## **Network Coding**

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)

≻Example:

- Bits A and B need to be transfered
- Every link transmits only a bit
- If the bits must be unchanged then
  - A and B can be received either on the right or on the left side
- Solution: Compute Xor A+B in the middle link and both sides get A and B

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer





### **Network Coding and Flow**

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)

#### >Theorem [Ahlswede et al.]

 There is a network code for each graph such that each target nodes receives as much information as the maximal flow problem for each target allows





> Goal

of data

bandwidth

## **Practical Network Coding** in Peer-to-Peer Networks

University of Freiburg Institute of Computer Science **Computer Networks and Telematics** Prof. Christian Schindelhauer

Christos Gkantsidis, Pablo Rodriguez Rodriguez, 2005 Source Packet 1 - Overcome the coupon collector problem for partitioning Packet 1 Packet 2 A message of m frames can be received if the sum of the m received encoded frames is at least m Node C Node A Node B

#### > Method

- Use linear combinations of the frames of the message

- Optimal transmission of files w.r.t the available

- Send combination with the corresponding variables
- Recombine transmitted frames in intermediate stations
- Receivers collect the linar combinations.
- Use matrix inverse of the parameters to reconstruct the original message



Packet 1, or 2, or 1⊕2?

#### Mobile Ad Hoc Networks



## **Encoding and Decoding**

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

 $\begin{array}{l} & \text{>Original message frames: } \mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \text{>} \\ & \text{>Encoded frames: } \mathbf{y}_{1}, \mathbf{y}_{2}, \dots, \mathbf{y}_{m} \\ & \text{>Random variables } \mathbf{r}_{ij} \end{array} \quad \begin{pmatrix} x_{1} \\ \vdots \\ x_{m} \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ \vdots \\ x_{m} \end{pmatrix} = y_{i} \\ & \text{>Hence} \end{array}$ 

$$\left(\begin{array}{ccc}r_{11}&\ldots&r_{1m}\\\vdots&\ddots&\vdots\\r_{m1}&\ldots&r_{mm}\end{array}\right)\cdot\left(\begin{array}{c}x_{1}\\\vdots\\x_{m}\end{array}\right)=\left(\begin{array}{c}y_{1}\\\vdots\\y_{m}\end{array}\right)$$

 $\succ$  If the matrix (r<sub>ii</sub>) is invertable, then we have

$$\left(\begin{array}{c} x_1\\ \vdots\\ x_m\end{array}\right) = \left(\begin{array}{ccc} r_{11} & \dots & r_{1m}\\ \vdots & \ddots & \vdots\\ r_{m1} & \dots & r_{mm}\end{array}\right)^{-1} \cdot \left(\begin{array}{c} y_1\\ \vdots\\ y_m\end{array}\right)$$

**Mobile Ad Hoc Networks** 

06.06.2007 7th Week - 5



## On Inverting a Random Matrix

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

#### ➤ Theorem

 If the numbers of a m x m random matrix are chosen uniformly and independently from a finite field of size b, then the random matrix can be inverted with probability of at least

$$1-\sum_{i=1}^m \frac{1}{b^i}$$

≻Idea: Choose finite field GF[2<sup>8</sup>]

- Computation with bytes is very efficient
- The success probability is at least 0.99
- In the error case an additional frame gives again a success probability of at least 0.99



# Speed of Network Coding in Peer-to-Peer-Networks

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

#### ≻Comparison

- Network-Coding (NC) versus
- Local-Rarest (LR) and
- Local-Rarest+Forward-Error-Correction (LR+FEC)





## Multicasting in Ad Hoc Networks

- > Minimum-Energy Multicast in Mobile Ad hoc Networks using Network
- Coding, Yunnan Wu, Philip A. Chou, Sun-Yuan Kung, 2006
- >Multicast: Send message from one node to a dedicated set
- >Example:
  - Traditional cost: 5 energy units for 1 message
  - With network coding: 9 energy units for 2 messages





## Multicasting in Ad Hoc Networks

- Minimum-Energy Multicast in Mobile Ad hoc Networks using Network Coding, Yunnan Wu, Philip A. Chou, Sun-Yuan Kung, 2006
- Solving minimal energy multicasting is NP-hard
  - Problem: Solve an integer linear optimization problem
- > With network coding the maximum throughput can be found in polynomial time
  - Solve linear optimization problem, i.e. a flow problem



Mobile Ad Hoc Networks

06.06.2007 7th Week - 9



## **XOrs in the Air**

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

XORs in the Air: Practical Wireless Network Coding, Sachin Katti Hariharan Rahul, Wenjun Hu, Katabi, Muriel Médard, Jon Crowcroft

≻ Problem:

- Maximize throughput in an ad hoc network
- Multihop messages lead to interferences

#### ≻Example

- Traditional: 4 messages to deliver a message from Alice to Bob and from B
- Network Coding: 3 messages





## **Components of COPE**

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

#### Opportunistic Listening

- Get maximum context for decoding messages

### Opportunistic Coding

 "The key question is what packets to code together to maximize throughput. A node may have multiple options, but it should aim to maximize the number of native packets delivered in a single transmission, while ensuring that each intended nexthop has enough information to decode its native packet."

#### Learning Neighbor State

- Each node announces the packets it has received
- Each node also guesses the packets a neighbor could have received



University of Freiburg Institute of Computer Science **Computer Networks and Telematics** Prof. Christian Schindelhauer



(a) B can code packets it wants to send



Packets in

B's Queue

P2

Next Hop

► A

→ C

→ D

(c) Possible coding options



## **Theoretical Gains**

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

#### ≻Coding Gain:

 Number of messages saved because of network coding

#### ≻Coding+MAC Gain:

- Intermediate routers forming a bottleneck further delay the medium access
- Using COPE an additional speedup occurs

| Topology       | Coding Gain | Coding+MAC Gain |
|----------------|-------------|-----------------|
| Alice-and-Bob  | 1.33        | 2               |
| "X"            | 1.33        | 2               |
| Cross          | 1.6         | 4               |
| Infinite Chain | 2           | 2               |
| Infinite Wheel | 2           | $\infty$        |

Table 2—Theoretical gains for a few basic topologies.

(a) Chain topology; 2 flows in reverse directions.



(d) Wheel topology; many flows intersecting at the center node.

06.06.2007 7th Week - 13



University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

#### Network Coding can help to

- increase traffic throughput in Ad Hoc Networks
  - COPE (in the absence of hidden terminal)
- decrease energy consumption in multicast
- increase robustness and reduce the error rate
- increase throughput in Peer-to-Peer Networks
- increase throughput in Wireless Sensor Networks
- Many Network Coding schemes suffer from the complexity of inverting large matrices and introduce a delay for decoding
- COPE is an exemption it is efficient and without delay



Figure 12—COPE can provide a several-fold (3-4x) increase in the throughput of wireless Ad hoc networks. Results are for UDP flows with randomly picked source-destination pairs, Poisson arrivals, and heavy-tail size distribution.

Thank you!



University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Mobile Ad Hoc Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

7th Week 06.06.2007