Peer-to-Peer Networks
 03 CAN (Content Addressable Network)

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

- Index entries are mapped to the square $[0,1]^{2}$
- using two hash functions to the real numbers
- according to the search key
- Assumption:
- hash functions behave a like a
 random
mapping

CAN Index Entries

- Index entries are mapped to the square $[0,1] 2$
- using two hash functions to the real numbers
- according to the search key
- Assumption:
- hash functions behave a like a random mapping
- Literature
- Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: Computer Communication Review. Volume 31., Dept. of Elec. Eng. and Comp. Sci., University of California, Berkeley (2001) 161-172

A
 First Peer in CAN

- In the beginning there is one peer owning the whole square

All data is assigned to the (green) peer

CAN: The 2nd Peer Arrives

The new peer chooses a random point in the square

- or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
- and contacts the
 owner

CAN: 2nd Peer Has Settled Down

- The new peer chooses a random point in the square
- or uses a hash function applied to the peers Internet address
The peer looks up the owner of the point
- and contacts the owner
- The original owner divides his rectangle in the middle and shares the data with
 the new peer

On the Size of a Peer‘s Area

- $R(p)$: rectangle of peer p
- $A(p)$: area of the $R(p)$
- n : number of peers
- area of playground square: 1
- Lemma
- For all peers we have
- Lemma

$$
E[A(p)]=\frac{1}{n}
$$

- Let $P_{R, n}$ denote the probability that no
 peers falls into an area R. Then we have

$$
P_{R, n} \leq e^{-n \operatorname{Vol}(R)}
$$

A CoNe
 Expected Area of a Peer

 Freiburg- Lemma
- For all peers we have

$$
E[A(p)]=\frac{1}{n}
$$

- Proof
- Let $\{1, .,, \mathrm{n}\}$ be the peers
- inserted in a random order
- Then
$\forall i \in\{1, \ldots, n\} \quad: \quad A(i)=A(1)$

- Because of symmetry

$$
\sum_{i=1}^{n} A(p)=1
$$

- Therefore
$1=\sum_{i=1}^{n} A(i)=E\left[\sum_{i=1}^{n} A(i)\right]=\sum_{i=1}^{n} E[A(i)]=n E[A(1)]$

On the Size of a Peer‘s Area

- $R(p)$: rectangle of peer p
- $A(p)$: area of the $R(p)$
- n : number of peers
- area of playground square: 1
- Lemma
- For all peers we have
- Lemma

$$
E[A(p)]=\frac{1}{n}
$$

- Let PR,n denote the probability that no peers falls into an area R. Then we have

$$
P_{R, n} \leq e^{-n \operatorname{Vol}(R)}
$$

An Area Not being Hit

- Lemma
- Let $P_{R, n}$ denote the probability that no peers falls into an area R.
Then we have $P_{R, n} \leq e^{-n \operatorname{Vol}(R)}$
- Proof
- Let $x=\operatorname{Vol}(R)$
- The probability that a peer does not fall into R
is $\quad 1-x$
- The probability that n peers do not fall into R is $(1-x)^{n}$
- So, the probability is bounded by

$$
m>1:\left(1-\frac{1}{m}\right)^{m} \leq \frac{1}{e}
$$

- because

$$
(1-x)^{n}=\left((1-x)^{\frac{1}{x}}\right)^{n x} \leq e^{-n x}
$$

How Fair Are the Data Balanced

- Lemma
- With probability $\mathrm{n}^{-\mathrm{c}}$ a rectangle of size $(\mathrm{c} \ln \mathrm{n}) / \mathrm{n}$ is not further divided
- Proof
- Let $P_{R, n}$ denote the probability that no peers falls into an area R. Then we have

$$
P_{R, n} \leq e^{-n \operatorname{Vol}(R)}
$$

- Every peer receives at most c ($\ln \mathrm{n}) \mathrm{m} / \mathrm{n}$ elements
- if all m elements are stored equally distributed over the area
- While the average peer stores m / n elements

$$
P_{R, n} \leq e^{-n \frac{c \ln n}{n}}=e^{-c \ln n}=n^{-c}
$$

- So, the number of data stored on a peer is bounded by c (ln n) times the average amount
 Freiburg

Network Structure of CAN

= Let d be the dimension of the square, cube, hypercube

- 1: line
- 2: square
- 3: cube
- 4: ...
- Peers connect
- if the areas of peers share a (d-1)-
 dimensional area
- e.g. for $\mathrm{d}=2$ if the rectangles touch by more than a point
- Compute the position of the index using the hash function on the key value
- Forward lookup to the neighbored peer which is closer to the index
- Expected number of hops for CAN in d dimensions:
- $O\left(n^{1 / d}\right)$

- Average degree of a node
- $O(d)$

Insertions in CAN $=$ Random Tree

- Random Tree
- new leaves are inserted randomly
- if node is internal then flip coin to forward to left or right sub-tree
- if node is leaf then insert two leafs to this node
- Depth of Tree
- in the expectation: $O(\log n)$
- Depth O(log n) with high probability, i.e. $1-n^{-c}$
- Observation
- CAN inserts new peers like leafs in a random tree

Leaving Peers in CAN

- If a peer leafs
- he does not announce it
- Neighbors continue testing on the neighborhood
- to find out whether peer has left
- the first neighboir who finds a missing neighbor takes over the area of the missing peer
- Peers can be responsible for many rectangles
- Repeated insertions and deletions of peers leed to fragmentation

- To heal fragmented areas
- from time to to time areas are freshly assigned
- Every peer with at least two zones
- erases smalles zone
- finds replacement peer for this zone
- 1st case: neighboring zone is undivided
- both peers are leafs in the random tree
- transfer zone to the neighbor

Defragmentation - The Difficult Case

- Every peer with at least two zones
- erases smalles zone
- finds replacement peer for this zone
- 2nd case: neighboring zone is further divided
- Perform DFS (depth first search) in neighbor tree until two neighbored leafs are found
- Transfer the zone to one leaf which gives up his zone
- Choose the other leaf to receive the latter zone

- More dimensions
- Multiples realities
- Distance metric for routing
- Overloading of zones
- Multiple hasing
- Topology adapted network construction
- Fairer partitioning
- Caching, replication and hot-spot management
- Let d be the dimension of the square, cube, hypercube
- 1: line
- 2: square
- 3: cube
- 4: ...
- The expected path length is $\mathrm{O}\left(\mathrm{n}^{1 / \mathrm{d}}\right)$
- Average number of neighbors $\mathrm{O}(\mathrm{d})$

More Realities

- Build simultanously r CANs with the same peers
- Each CAN is called a reality
- For lookup
- greedily jump between realities
- choose reality with the closest distance to the target
- Advantanges

- robuster network
- faster search

More Realities

- Advantages

\#dimensions=2

- robuster
- shorter paths

increasing dimensions, \#realities=2
increasing realities, \#dimensions=2
- Dimensionens reduce the lookup path length more effciently
- Realities produce more robust networks

Peer-to-Peer Networks
 03 CAN (Content Addressable Network)

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

