

Peer-to-Peer Networks 07 Degree Optimal Networks

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

BURG

N.

A Diameter and Degree in Graphs

- CHORD:
 - degree O(log n)
 - diameter O(log n)
- Is it possible to reach a smaller diameter with degree g=O(log n)?
 - In the neighborhood of a node are at most g nodes
 - In the 2-neighborhood of node are at most g² nodes
 - ...
 - In the d-neighborhood of node are at most g^d nodes
- So, $(\log n)^d = n$
- Therefore $d = \frac{\log n}{\log \log n}$
- So, Chord is quite close to the optimum diameter.

Are there P2P-Netzwerke with constant out-degree and diameter log n?

- CAN
 - degree: 4
 - diameter: n^{1/2}
- Can we reach diameter O(log n) with constant degree?

Degree Optimal Networks

Viceroy

A Scalable and Dynamic Emulation of the Butterfly

Dahlia Malkhi, Moni Naor, David Ratajczak

A Diameter and Degree Freiburg

- Chord, Pastry, Tapestry
 - Diameter O(log n)
 - Degree O(log n)
- Wanted
 - Network with small degree
 - e.g. indegree and outdegree constant
 - Diameter O(log n)
- Solution:
 - Viceroy
 - Distance-Halving-Netzwerk
 - Koorde

A Definition Butterfly-Graph Freiburg

- Nodes: (i, S)
 - $i \in \{1,..,k\}$
 - S is k-digit binary string
- Interpretation
 - $m = 2^k$ nodes per level
 - k levels
 - Usually nodes of the k-th level are depicted twice
- Edges: From
- $\quad (i, (b_1, ..., b_i, ..., b_k))$
 - to ((i+1) mod k, $(b_1,..,b_i, ..., b_k)$) and
 - to ((i+1) mod k, $(b_1,...,\neg b_i, ..., b_k)$)

CoNe Freiburg

Properties Butterfly-Graph

- Small degree
 - in/out degree = 4
- Small diameter
 - diameter = $2 \log m = O(\log n)$ (optimal!)
- Good emulation properties
 - All networks can be efficiently embedded into a Butterfly-Graph
 - i.e. an edge of another network can be replaced by short paths in a Butterfly-Graph
- Simple routing
 - routing decision in constant time
- No bottlenecks
 - good routing algorithms can avoid traffic congestions in a node
- High error tolerance
 - Large number of node failures can be tolerated

- Goal
 - Scalability
 - Coping dynamic behavior
 - Distribution of traffic
- Congestion
 - maximum number of messages a peer needs to transport
- Costs for peers joining/leaving
 - minimize number of messages and time
- Length of a search time
 - a.k.a. dilation
- Viceroy has been the first peer-to-peer network with optimal degree-diameter relationship

CoNe Freiburg

Structure of Viceroy

- Nodes in Viceroy
 - at the beginning they choose a random level i of the butterfly graph and a random position x: (i,x), i∈{1,...,log n}, x ∈ [0,1)
 - (it is necessary to know log n a-priori)
- Combination of three network structures
 - A ring for all nodes
 - connects all nodes
 - A ring for each of the log n levels
 - corresponds to the interval [0,1)
 - The Butterfly-Network between layers
 - i.e. in level i is a link from (i,x) to the
 - successor of (i+1,x)
 - successor of $(i+1,x+2^{-i} \mod 1)$
 - predecessor of (i-1, x)
 - predeccessor of (i-1, x-2⁻ⁱ mod 1)

Node

Real identifier
 Viceroy "butterfly"-link

A Computation of log n Freiburg

- Consider neighbor in a ring
- Let d be the distance on the ring [0,1) to this neighbor
- Then:
 - E[d] = 1/n
 - $P[d > c (log n)/n] < n^{-O(1)}$
 - P[d < 1/n^{1+c}] < n^{-c}
- Therefore -log d is a constant factor approximation of log n with with probability.
- If one measures the average distance to the next O(log n) neighbors, then the average is a good approximation of log n with high probability.

REIBURG

- 1. Insert node at an arbitrary position in the overall connecting ring
- 2. Estimate log n
- **3.** Choose random level i uniformly from {1,..,log n}
- 4. Look up position in ViceRoy network starting from neighbor in the ring
- 5. Insert peer in the level of the ViceRoyn network as follows
 - Adjust links from and to neighbors of the ring i
 - Adjust pointers from (i,x) to
 - successor of (i+1,x)
 - successor of (i+1,x+2⁻ⁱ)
 - predeccessor of (i-1, x)
 - predeccessor of (i-1, x-2⁻ⁱ)
 - Adjust pointers from the levels i, i-1, i+1 towards this new node.
- Run time / number of messages
 - Lookup: (O(log n)) +
 - Finding successors or predecessors (O(log n))

Peer (i,x) receives lookup request towards (j,y) IF i=j and $|x-y| \le (\log n)^2/n$ THEN Forward lookup request to ring neighbor in level i ELSE IF y farther to the right than $x+2^i$ THEN Forward lookup request to successor of $(i+1,x+2^i)$ ELSE Forward lookup request to successor of Z = (i+1,x)IF successor Z is farther to the right than x THEN Search the node (i+1,p) on the ring (i+1) starting from Z such that p<x FI FI FI

Lemma

With high probability the lookup takes O(log n) time and messages.

Properties of ViceRoy

- Outdegree constant
- Expected indegree constant
 - worst case indegree O(log n)
- Diameter: O(log n) w.h.p.
- Communication can be balanced by the Butterfly-Graph

A Talking about the Degree Freiburg

- outdegree: 2+2+2+2 = 8
- If the distribution is perfect, i.e. $\Theta(1/n)$
 - then also the indegree ist constant

But

- Indegree is only constant in the expectation
- yet, Ω(log n) may occur
- Problem
 - Large distances to neighbors on a Viceroy ring attract a lot of incoming pointers
 - Small distances "spam" peers on neihbored rings
- Solution:
 - Do not use hashing, but use the principle of multiple choice (see later)

- Butterfly graph
 - well suited for routing
 - often used and well known algorithms
- First peer-to-peer with constant (out-) degree
- But:
 - Multiple ring structure is complex
 - Inserting takes time O(log n)

Degree Optimal Networks

Distance Halving

Moni Naor, Udi Wieder 2003

A Continuous Graphs Freiburg

- are infinite graphs with continuous node sets and edge sets
- The underlying graph
 - $x \in [0,1)$
 - Edges:
 - (x,x/2), *left* edges
 - (x,1+x/2), right edges
 - plus revers edges.
 - (x/2,x)
 - (1+x/2,x)

(x, 1/2 + x/2)

The Transition from Continuous to Discrete Graphs

- Consider discrete intervals resulting from a partition of the continuous space
- Insert edge between interval A and B
 - if there exists $x \in A$ and $y \in B$ such that edge (x,y) exists in the continuous graph
- Intervals result from successive partitioning (halving) of existing intervals
- Therefore the degree is constant if
 - the ratio between the size of the largest and smallest interval is constant
- This can be guarranteed by the principle of multiple choice
 - which we present later on

CoNe Freiburg

Principle of Multiple Choice

- Before inserted check c log n positions
- For position p(j) check the distance a(j) between potential left and right neighbor
- Insert element at position p(j) in the middle between left and right neighbor, where a(j) was the maximum choice
- Lemma
 - After inserting n elements with high probability only intervals of size 1/(2n), 1/n und 2/n occur.

Proof of Lemma

1st Part: With high probability there is no interval of size larger than 2/n

follows from this Lemma

Lemma*

Let c/n be the largest interval. After inserting 2n/c peers all intervals are smaller than c/(2n) with high probability

From applying this lemma for c=n/2,n/4, ...,4 the first lemma follows.

- > 2nd part: No intervals smaller than 1/(2n) occur
 - The overall length of intervals of size 1/(2n) before inserting is at most 1/2
 - Such an area is hit with probability at most 1/2
 - The probability to hit this area more than c log n times is at least $2^{-c\log n} = n^{-c}$
 - Then for c>1 such an interval will not further be divided with probability into an interval of size 1/(4m).

- Theorem Chernoff Bound
 - Let x1,...,xn independent Bernoulli experiments with
 - P[x_i = 1] = p
 - P[x_i = 0] = 1-p
 - Let $S_n = \sum_{i=1}^n x_i$
 - Then for all c>0

For
$$0 \le c \le 1$$
 $\mathbf{P}[S_n \ge (1+c) \cdot \mathbf{E}[S_n]] \le e^{-\frac{1}{3}\min\{c,c^2\}pn}$

$$\mathbf{P}[S_n \le (1-c) \cdot \mathbf{E}[S_n]] \le e^{-\frac{1}{2}c^2pn}$$

Proof of Lemma*

- Consider the longest interval of size c/n. Then after inserting 2n/c peers all intervals are smallver than c/ (2n) with high probability.
- Consider an interval of length c/n
- With probability c/n such an interval will be hit
- Assume, each peer considers t log n intervals
- The expected number of hits is therefore

$$E[X] = \frac{c}{n} \cdot \frac{2n}{c} \cdot t \log n = 2t \log n$$

 From the Chernoff bound it follows

$$P[X \le (1-\delta)E[X]] \le n^{-\delta^2 t}$$

If $\delta^2 t \ge 2$ then this interval will be hit at least $2(1-\delta)t\log n$ times

• Choose
$$2(1-\delta) \ge 1$$

 $\delta \ge \frac{1}{2}$ $t \le \frac{1}{2}\delta^2$

Then, every interval is partitioned w.h.p.

BURG

A Lookup in Distance-Halving

- Map start/target to new-start/ target by using left edges
- Follow all left edges for 2+ log n steps
- Then, the newnew...-new-start and the newnew-...newtarget are neighbored.

A Lookup in Distance-Halving

- Follow all left edges for 2+ log n steps
- Use neighbor edge to go from new*-start to new*-target
- Then follow the reverse left edges from new^{m+1}target to new^mtarget

CoNe Freiburg

Structure of Distance-Halving

- Peers are mapped to the intervals
 - uses DHT for data
- Additional neighbored intervals are connected by pointers
- The largest interval has size 2/n w.h.p.
 - i.e. probability 1-n^{-c} for some constant c
- The smallest interval size 1/(2n) w.h.p.
- Then the indegree and outdegree is constant
- Diameter is O(log n)
 - which follows from the routing

This works also using only right edges

This works also using a mixture of right and left edges

Congestion Avoidance during Lookup

- Left and right-edges can be used in any ordering
 - if one stores the combination for the reverse edges
- Analog to Valiant's routing result for the hypercube one can show
- The congestion ist at most O(log n),
 - i.e. every peer transports at most a factor of O(log n) more packets than any optimal network would need
- The same result holds for the Viceroy network

A Inserting peers in Distance-Halving

- 1. Perform multiple choice principle
 - i.e. c log n queries for random intervals
 - Choose largest interval
 - halve this interval
- 2. Update ring edges
- 3. Update left and right edges
 - by using left and right edges of the neighbors

Lemma

Inserting peers in Distance Halving needs at most O(log² n) time and messages.

A Summary Distance-Halving

- Simple and efficient peer-to-peer network
 - degree O(1)
 - diameter O(log n)
 - load balancing
 - traffic balancing
 - lookup complexity O(log n)
 - insert O(log²n)
- We already have seen continuous graphs in other approaches
 - Chord
 - CAN
 - Koorde
 - ViceRoy

Degree Optimal Networks

Koorde M. Frans Kaashoek and David R. Karger 2003

BURG

IN IN

Shuffle, Exchange, Shuffle-Exchange

- Consider binary string s of length m
 - shuffle operation:
 - shuffle(s₁, s₂, s₃,..., s_m) = (s₂,s₃,..., s_m,s₁)
 - exchange:
 - exchange(s₁, s₂, s₃,..., s_m) = (s₁, s₂, s₃,..., ¬s_m)
 - shuffle exchange:
 - SE(S) = exchange(shuffle(S)) = $(s_2, s_3, ..., s_m, \neg s_1)$
- Observation:

Every string a can be transformed into a string b by at most m shuffle and shuffle exchange operations

Shuffle

Exchange

Shuffle-Exchange

UNI FREIBURG

Magic Trick CoNe Freiburg

Observation

Every string a can be transformed into a string b by at most m shuffle and shuffle exchange operations Beispiel:

From	0	1	1	1	0	1	1
to	1	0	0	1	1	1	1
via	SE	E SE	E SE	S	SE	S	S
	operations						

The De Bruijn Graph

- A De Bruijn graph consists of n=2m nodes,
 - each representing an m digit binary strings
- Every node has two outgoing edges
 - (u,shuffle(u))
 - (u, SE(u))
- Lemma
 - The De Bruijn graph has degree 2 and diameter log n
- Koorde = Ring + DeBruijn-Graph

➤Consider ring with 2^m nodes and De Bruijn edges

FREIBURG

CoNe Freiburg

Koorde = Ring + DeBruijn-Graph

Note

- $shuffle(s_1, s_2,..., s_m) = (s_2,..., s_m, s_1)$
 - shuffle (x) =

 (x div 2^{m-1})+(2x) mod 2^m
- SE(S) = $(s_2, s_3, ..., s_m, \neg s_1)$
 - SE(x) = 1-(x div 2^{m-1})+(2x) mod 2^m
- Hence: Then neighbors of x are
 - 2x mod 2^m and
 - 2x+1 mod 2^m

Virtual DeBruijn Nodes

- To avoid collisions we choose
 - m > (2+c) log (n)
- Then the probability of two peers colliding is at most n^{-c}
- But then we have much mor nodes in the graph than peers in the network
- Solution
 - Every peer manages all DeBruijn nodes between his position and his successor on the ring
 - only for incoming edges
 - outgoing edges are considered only from the peer's poisition on the ring

Properties of Koorde

- Theorem
 - Every node has four pointers
 - Every node has at most O(log n) incoming pointers w.h.p.
 - The diameter is O(log n) w.h.p.
 - Lookup can be performed in time O(log n) w.h.p.
- But:
 - Connectivity of the network is very low.

Properties of Koorde

- Theorem
 - 1. Every node has four pointers
 - 2. Every node has at most O(log n) incoming pointers w.h.p.
- Proof:
 - 1. follows from the definition of the DeBruijn graph and the observation that only non-virtual nodes have outgoing edges
 - 2. The distance between two peers is at most c (log n)/n 2^m with high probability
 - The number of nodes pointing to this distance is therefore at most c (log n) with high probability

Properties of Koorde

- Theorem
 - The diameter is O(log n) w.h.p.
 - Lookup can be performed in time O(log n) w.h.p.
- Proof sketch:
 - The minimal distance of two peers is at least n^{-c} 2^m w.h.p.
 - Therefore use only the c log n most significant bits in the routing
 - since the prefix guarantees that one end in the responsibility area of a peer
 - Follow the routing algorithm on the De-Bruijn-graph until one ends in the responsibility area of a peer

CoNe Freiburg

Degree k-DeBruijn-Graph

- Consider alphabet using k letters, e.g. k = 3
- Now, every k-DeBruijnnode has successors
 - (kx mod km)
 - (kx +1 mod km)
 - (kx+2 mod km)
 - ... (kx+k-1 mod km)
- Diameter is reduced to
 - (log m)/(log k)
- Graph connectivity is increased to k

k-Koorde CoNe Freiburg

- Straight-forward generalization of Koorde
 - by using k-DeBruijn graphs
- Improves lookup time and messages to O((log n)/(log k)) steps

Peer-to-Peer Networks 07 Degree Optimal Networks

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

BURG

N.