
Peer-to-Peer Networks
07 Degree Optimal Networks

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

Diameter and Degree in Graphs

§ CHORD:
- degree O(log n)
- diameter O(log n)

§ Is it possible to reach a smaller diameter with degree g=O(log n)?
- In the neighborhood of a node are at most g nodes
- In the 2-neighborhood of node are at most g2 nodes
- ...
- In the d-neighborhood of node are at most gd nodes

§ So,

§ Therefore

§ So, Chord is quite close to the optimum diameter.

2

Are there P2P-Netzwerke with constant
out-degree and diameter log n?

§ CAN
- degree: 4
- diameter: n1/2

§ Can we reach diameter O(log n) with constant
degree?

3

Degree Optimal Networks

Viceroy

A Scalable and Dynamic Emulation of the
Butterfly

Dahlia Malkhi, Moni Naor, David Ratajczak
2001

Diameter and Degree

§ Chord, Pastry, Tapestry
- Diameter O(log n)
- Degree O(log n)

§ Wanted
- Network with small degree
- e.g. indegree and outdegree constant
- Diameter O(log n)

§ Solution:
- Viceroy
- Distance-Halving-Netzwerk
- Koorde

5

Definition Butterfly-Graph

§ Nodes: (i, S)

- i ∈ {1,..,k}

- S is k-digit binary string

§ Interpretation

- m = 2k nodes per level

- k levels

- Usually nodes of the k-th level are
depicted twice

§ Edges: From

§ (i, (b1,..,bi, ..., bk))

- to ((i+1) mod k, (b1,..,bi, ..., bk)) and

- to ((i+1) mod k, (b1,..,¬bi, ..., bk))

6

Properties Butterfly-Graph

§ Small degree
- in/out - degree = 4

§ Small diameter
- diameter = 2 log m = O(log n) (optimal!)

§ Good emulation properties
- All networks can be efficiently embedded into a Butterfly-Graph
- i.e. an edge of another network can be replaced by short paths in

a Butterfly-Graph
§ Simple routing

- routing decision in constant time
§ No bottlenecks

- good routing algorithms can avoid traffic congestions in a node
§ High error tolerance

- Large number of node failures can be tolerated

7

Overview Viceroy

§ Goal
- Scalability
- Coping dynamic behavior
- Distribution of traffic

§ Congestion
- maximum number of messages a peer needs to transport

§ Costs for peers joining/leaving
- minimize number of messages and time

§ Length of a search time
- a.k.a. dilation

§ Viceroy has been the first peer-to-peer network with
optimal degree-diameter relationship

8

Structure of Viceroy

§ Nodes in Viceroy
- at the beginning they choose a random level

i of the butterfly graph and a random position
x: (i,x), i∈{1,..,log n}, x ∈ [0,1)

- (it is necessary to know log n a-priori)

§ Combination of three network structures
- A ring for all nodes

• connects all nodes
- A ring for each of the log n levels

• corresponds to the interval [0,1)
- The Butterfly-Network between layers

• i.e. in level i is a link from (i,x) to the
- successor of (i+1,x)
- successor of (i+1,x+2-i mod 1)
- predecessor of (i-1, x)
- predeccessor of (i-1, x-2-i mod 1)

9

Computation of log n

§ Consider neighbor in a ring

§ Let d be the distance on the ring [0,1) to this neighbor

§ Then:
- E[d] = 1/n
- P[d > c (log n)/n] < n-O(1)

- P[d < 1/n1+c] < n-c

§ Therefore -log d is a constant factor approximation of log n
with with probability.

§ If one measures the average distance to the next O(log n)
neighbors, then the average is a good approximation of log n
with high probability.

10

Inserting Peers

1. Insert node at an arbitrary position in the overall connecting ring

2. Estimate log n

3. Choose random level i uniformly from {1,..,log n}

4. Look up position in ViceRoy network starting from neighbor in the ring

5. Insert peer in the level of the ViceRoyn network as follows

– Adjust links from and to neighbors of the ring i

– Adjust pointers from (i,x) to

§ successor of (i+1,x)

§ successor of (i+1,x+2-i)

§ predeccessor of (i-1, x)

§ predeccessor of (i-1, x-2 - i)

– Adjust pointers from the levels i, i-1, i+1 towards this new node.

Ø Run time / number of messages

– Lookup: (O(log n)) +

– Finding successors or predecessors (O(log n))

11

Lookup

§ Peer (i,x) receives lookup request towards (j,y)
IF i=j and |x-y| ≤ (log n)2/n THEN

Forward lookup request to ring neighbor in level i
ELSE

IF y farther to the right than x+2i THEN
Forward lookup request to sucessor of (i+1,x+2i)

ELSE
Forward lookup request to sucessor of Z= (i+1,x)
IF successor Z is farther to the right than x THEN
 Search the node (i+1,p) on the ring (i+1) starting from Z such that p<x
FI

FI
FI

Lemma
With high probability the lookup takes O(log n) time and messages.

12

Properties of ViceRoy

§ Outdegree constant
§ Expected indegree constant

- worst case indegree O(log n)

§ Diameter: O(log n) w.h.p.
§ Communication can be balanced by the Butterfly-

Graph

13

Talking about the Degree

§ outdegree: 2+2+2+2 = 8
§ If the distribution is perfect, i.e. Θ(1/n)

- then also the indegree ist constant

§ But
- Indegree is only constant in the expectation
- yet, Ω(log n) may occur

§ Problem
- Large distances to neighbors on a Viceroy ring attract a lot of

incoming pointers
- Small distances „spam“ peers on neihbored rings

§ Solution:
- Do not use hashing, but use the principle of multiple choice (see

later)

14

Summary ViceRoy

§ Butterfly graph
- well suited for routing
- often used and well known algorithms

§ First peer-to-peer with constant (out-) degree

§ But:
- Multiple ring structure is complex
- Inserting takes time O(log n)

15

Degree Optimal Networks

Distance Halving

Moni Naor, Udi Wieder
2003

16

Continuous Graphs

§ are infinite graphs with
continuous node sets and
edge sets

§ The underlying graph
- x ∈ [0,1)
- Edges:

• (x,x/2), left edges
• (x,1+x/2), right edges

- plus revers edges.
• (x/2,x)
• (1+x/2,x)

17

The Transition from Continuous to
Discrete Graphs

§ Consider discrete intervals resulting
from a partition of the continuous
space

§ Insert edge between interval A and
B
- if there exists x ∈ A and y ∈ B such that

edge (x,y) exists in the continuous graph

§ Intervals result from successive
partitioning (halving) of existing
intervals

§ Therefore the degree is constant if
- the ratio between the size of the largest

and smallest interval is constant

§ This can be guarranteed by the
principle of multiple choice
- which we present later on

18

Principle of Multiple Choice

‣ Before inserted check c log n positions
‣ For position p(j) check the distance a(j) between potential left

and right neighbor
‣ Insert element at position p(j) in the middle between left and

right neighbor, where a(j) was the maximum choice
‣ Lemma

• After inserting n elements with high probability only intervals of
size 1/(2n), 1/n und 2/n occur.

19

Proof of Lemma

1st Part: With high probability there is no interval of size
larger than 2/n

follows from this Lemma
Lemma*
	 Let c/n be the largest interval. After inserting 2n/c peers

all intervals are smaller than c/(2n) with high probability
From applying this lemma for c=n/2,n/4, ...,4 the first

lemma follows.
	

20

Proof

‣ 2nd part: No intervals smaller than 1/(2n) occur
• The overall length of intervals of size 1/(2n) before inserting is at

most 1/2
• Such an area is hit with probability at most 1/2
• The probability to hit this area more than c log n times is at least

• Then for c>1 such an interval will not further be divided with
probability into an interval of size 1/(4m).

21

§ Theorem Chernoff Bound
- Let x1,...,xn independent Bernoulli experiments with

• P[xi = 1] = p
• P[xi = 0] = 1-p

- Let

- Then for all c>0

- For 0≤c≤1

Chernoff-Bound

22

� � 1
2

Proof of Lemma*

§ Consider the longest interval
of size c/n. Then after
inserting 2n/c peers all
intervals are smallver than c/
(2n) with high probability.

§ Consider an interval of
length c/n

§ With probability c/n such an
interval will be hit

§ Assume, each peer
considers t log n intervals

§ The expected number of hits
is therefore

§ From the Chernoff bound it
follows

§ If then this
interval will be hit at least
 times

§ Choose

§ Then, every interval is
partitioned w.h.p.

23

t 1
2
�2

Lookup in Distance-Halving

§ Map start/target
to new-start/
target by using
left edges

§ Follow all left
edges for 2+ log
n steps

§ Then, the new-
new...-new-start
and the new-
new-...new-
target are
neighbored.

24

new-target targetnew-start start

new2-
start

new1-
start

new2-
target

new1-
target

new2-start=
new3-start

new3-
target

new2-
target

0 1

Lookup in Distance-Halving

25

new-target

target

new-start

start

new2-
start

new1-
start

new2-
target

new1-
target

new2-start=
new3-start

new3-
target

new2-
target

§ Follow all left
edges for 2+ log n
steps

- Use neighbor
edge to go from
new*-start to
new*-target

§ Then follow the
reverse left edges
from newm+1-
target to newm-
target

Structure of Distance-Halving

§ Peers are mapped to the intervals
- uses DHT for data

§ Additional neighbored intervals are connected by
pointers

§ The largest interval has size 2/n w.h.p.
- i.e. probability 1-n-c for some constant c

§ The smallest interval size 1/(2n) w.h.p.
§ Then the indegree and outdegree is constant
§ Diameter is O(log n)

- which follows from the routing

26

Lookup in Distance-Halving

27

§ This works also using only right edges

new-target

target

new-start

start

new2-
start

new1-
start

new2-
target

new1-
target

new2-start=
new3-start

new3-
target

new2-
target

Lookup in Distance-Halving

28

§ This works also using a mixture of right and left edges

target start

Congestion Avoidance during Lookup

§ Left and right-edges can be used in any ordering
- if one stores the combination for the reverse edges

§ Analog to Valiant‘s routing result for the hyper-
cube one can show

§ The congestion ist at most O(log n),
- i.e. every peer transports at most a factor of O(log n) more

packets than any optimal network would need

§ The same result holds for the Viceroy network

29

Inserting peers in Distance-Halving

1. Perform multiple choice principle
§ i.e. c log n queries for random intervals
§ Choose largest interval
§ halve this interval

2. Update ring edges
3. Update left and right edges
§ by using left and right edges of the neighbors

Lemma
 Inserting peers in Distance Halving needs at most

O(log2 n) time and messages.

30

Summary Distance-Halving

§ Simple and efficient peer-to-peer network
- degree O(1)
- diameter O(log n)
- load balancing
- traffic balancing
- lookup complexity O(log n)
- insert O(log2n)

§ We already have seen continuous graphs in other
approaches
- Chord
- CAN
- Koorde
- ViceRoy

31

Degree Optimal Networks

Koorde
M. Frans Kaashoek and David R.

Karger 2003

Shuffle, Exchange, Shuffle-Exchange

§ Consider binary string s of length m

- shuffle operation:

• shuffle(s1, s2, s3,..., sm) =
 (s2,s3,..., sm,s1)

- exchange:

• exchange(s1, s2, s3,..., sm) =
 (s1, s2, s3,..., ¬sm)

- shuffle exchange:

• SE(S) = exchange(shuffle(S))
 = (s2,s3,..., sm, ¬ s1)

§ Observation:

Every string a can be transformed into a
string b by at most m shuffle and shuffle
exchange operations

Shuffle

Exchange

Shuffle-Exchange

33

Magic Trick

§ Observation

Every string a can be transformed into a
string b by at most m shuffle and shuffle
exchange operations Beispiel:

From 0 1 1 1 0 1 1

to 1 0 0 1 1 1 1

via SE SE SE S SE S S

 operations

SE

SE

S

S

S

SE

SE

34

The De Bruijn Graph

§ A De Bruijn graph consists of
n=2m nodes,
- each representing an m digit binary

strings

§ Every node has two outgoing
edges
- (u,shuffle(u))
- (u, SE(u))

§ Lemma
- The De Bruijn graph has degree 2

and diameter log n

§ Koorde = Ring + DeBruijn-Graph

35

Koorde = Ring + DeBruijn-Graph

ØConsider ring with 2m nodes and De Bruijn edges

36

Koorde = Ring + DeBruijn-Graph

§ Note
- shuffle(s1, s2,..., sm) = (s2,...,

sm,s1)
• shuffle (x) =

(x div 2m-1)+(2x) mod 2m
- SE(S) = (s2,s3,..., sm, ¬ s1)

• SE(x) =
1-(x div 2m-1)+(2x) mod 2m

- Hence: Then neighbors of x
are
• 2x mod 2m and
• 2x+1 mod 2m

37

Virtual DeBruijn Nodes

§ To avoid collisions we choose
- m > (2+c) log (n)

§ Then the probability of two
peers colliding is at most n-c

§ But then we have much mor
nodes in the graph than
peers in the network

§ Solution
- Every peer manages all

DeBruijn nodes between his
position and his successor on
the ring

- only for incoming edges
- outgoing edges are considered

only from the peer‘s poisition on
the ring

38

O(log n) Peers
in the interval of

length
c (log n)/n 2m

virtual
DeBrujin-nodes in the

responsibility
range of a peer

Properties of Koorde

§ Theorem
- Every node has four pointers
- Every node has at most O(log n) incoming pointers w.h.p.
- The diameter is O(log n) w.h.p.
- Lookup can be performed in time O(log n) w.h.p.

§ But:
- Connectivity of the network is very low.

39

Properties of Koorde

§ Theorem
- 1. Every node has four pointers
- 2. Every node has at most O(log n)

incoming pointers w.h.p.
§ Proof:

- 1. follows from the definition of the
DeBruijn graph and the
observation that only non-virtual
nodes have outgoing edges

- 2. The distance between two
peers is at most c (log n)/n 2m
with high probability

- The number of nodes pointing to
this distance is therefore at most
c (log n) with high probability

40

O(log n) Peers
in the interval of

length
c (log n)/n 2m

virtual
DeBrujin-nodes in the

responsibility
range of a peer

Properties of Koorde

§ Theorem
- The diameter is O(log n) w.h.p.
- Lookup can be performed in time O(log n) w.h.p.

§ Proof sketch:
- The minimal distance of two peers is at least n-c 2m w.h.p.
- Therefore use only the c log n most significant bits in the

routing
• since the prefix guarantees that one end in the responsibility

area of a peer
- Follow the routing algorithm on the De-Bruijn-graph until

one ends in the responsibility area of a peer

41

Degree k-DeBruijn-Graph

§ Consider alphabet using k
letters, e.g. k = 3

§ Now, every k-DeBruijn-
node has successors
- (kx mod km)
- (kx +1 mod km)
- (kx+2 mod km)
- ... (kx+k-1 mod km)

§ Diameter is reduced to
- (log m)/(log k)

§ Graph connectivity is
increased to k

42

k-Koorde

§ Straight-forward
generalization of Koorde
- by using k-DeBruijn graphs

§ Improves lookup time and
messages to
O((log n)/(log k)) steps

43

Peer-to-Peer Networks
07 Degree Optimal Networks

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

