A

CoNe
Freiburg INFORMATIE

RRRRRRRR

Peer-to-Peer Networks
07 Degree Optimal Networks

Christian Schindelhauer
Technical Faculty

Computer-Networks and Telematics
University of Freiburg



A, Diameter and Degree in Graphs

CoNe
Freiburg

CHORD:

- degree O(log n)

- diameter O(log n)

Is it possible to reach a smaller diameter with degree g=0(log n)?
- In the neighborhood of a node are at most g nodes

- In the 2-neighborhood of node are at most g2 nodes

- In the d-neighborhood of node are at most g? nodes

SO, (logn)? =n

Therefore logn
d

- log logn

So, Chord is quite close to the optimum diameter.



/A\ Are there P2P-Netzwerke with constant

mabnrg  OUt-degree and diameter log n?

CAN
- degree: 4
- diameter: n2

Can we reach diameter O(log n) with constant
degree?
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A, Diameter and Degree
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Chord, Pastry, Tapestry
- Diameter O(log n)

- Degree O(log n)

Wanted

- Network with small degree
- e.g. indegree and outdegree constant
- Diameter O(log n)
Solution:

- Viceroy

- Distance-Halving-Netzwerk
- Koorde



A, Definition Butterfly-Graph
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Nodes: (i, S)

- ie{1,.k}

- S is k-digit binary string
Interpretation

- m = 2k nodes per level
- klevels

- Usually nodes of the k-th level are
depicted twice

Edges: From

(i, (b1,..,bi, ..., b))

- to ((i+1) mod k, (b4,..,b;, ..., b,)) and
- to ((i+1) mod k, (by4,..,=b;, ..., by))
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A Properties Butterfly-Graph
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Small degree

- in/out - degree =4

Small diameter

- diameter = 2 log m = O(log n) (optimal!)
Good emulation properties

- All networks can be efficiently embedded into a Butterfly-Graph

- i.e. an edge of another network can be replaced by short paths in
a Butterfly-Graph

Simple routing

- routing decision in constant time

No bottlenecks

- good routing algorithms can avoid traffic congestions in a node

High error tolerance
- Large number of node failures can be tolerated



A, Overview Viceroy
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Goal

- Scalability

- Coping dynamic behavior

- Distribution of traffic

Congestion

- maximum number of messages a peer needs to transport

Costs for peers joining/leaving

- minimize number of messages and time
Length of a search time

- a.k.a. dilation

Viceroy has been the first peer-to-peer network with
optimal degree-diameter relationship



,A\ Structure of Viceroy
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Nodes in Viceroy

- at the beginning they choose a random level
| of the butterfly graph and a random position %

x: (i,x), ie{1,..,Jlog n}, x € [0,1)
- (it is necessary to know log n a-priori)

Combination of three network structures
- Aring for all nodes w

connects all nodes

- Aring for each of the log n levels
corresponds to the interval [0,1)

- The Butterfly-Network between layers
i.e. in level iis a link from (i,x) to the

- successor of (i+1,x)
- successor of (i+1,x+27mod 1)

- predecessor of (i-1, X)

- predeccessor of (i-1, x-2 mod 1) S e et




A, Computation of log n
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Consider neighbor in a ring
Let d be the distance on the ring [0,1) to this neighbor

Then:

- E[d] =1/n

- P[d > c (log n)/n] < n-0()
- P[d <1/n"*¢] < n<

Therefore -log d is a constant factor approximation of log n
with with probability.

If one measures the average distance to the next O(log n)
neighbors, then the average is a good approximation of log n
with high probability.



A Inserting Peers
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1. Insert node at an arbitrary position in the overall connecting ring
2. Estimate log n
3. Choose random level i uniformly from {1,..,log n}
4. Look up position in ViceRoy network starting from neighbor in the ring
5. Insert peer in the level of the ViceRoyn network as follows
— Adjust links from and to neighbors of the ring i
— Adjust pointers from (i,x) to
= successor of (i+1,x)
= successor of (i+1,x+27)
» predeccessor of (i-1, x)
= predeccessor of (i-1, x-2-1)
— Adjust pointers from the levels i, i-1, i+1 towards this new node.
» Run time / number of messages
— Lookup: (O(log n)) +

— Finding successors or predecessors (O(log n))



A, Lookup
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Peer (i,x) receives lookup request towards (j,y)
IF i=j and |x-y| < (log n)¢/n THEN
Forward lookup request to ring neighbor in level i
ELSE
IF y farther to the right than x+2! THEN
Forward lookup request to sucessor of (i+1,x+2)
ELSE
Forward lookup request to sucessor of Z= (i+1,x)
IF successor Z is farther to the right than x THEN
Search the node (i+1,p) on the ring (i+1) starting from Z such that p<x
Fl
Fl
FI

Lemma
With high probability the lookup takes O(log n) time and messages.



A, Properties of ViceRoy
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Outdegree constant
Expected indegree constant

- worst case indegree O(log n)
Diameter: O(log n) w.h.p.

Communication can be balanced by the Butterfly-
Graph



A Talking about the Degree
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outdegree: 2+2+2+2 =8
If the distribution is perfect, i.e. ©(1/n)

- then also the indegree ist constant

But

- Indegree is only constant in the expectation
- yet, Q(log n) may occur

Problem

- Large distances to neighbors on a Viceroy ring attract a lot of
incoming pointers

- Small distances ,spam” peers on neihbored rings
Solution:

- Do not use hashing, but use the principle of multiple choice (see
later)



A, Summary ViceRoy

CoNe
Freiburg

Butterfly graph

- well suited for routing
- often used and well known algorithms

First peer-to-peer with constant (out-) degree

But:

- Multiple ring structure is complex
- Inserting takes time O(log n)



/A\ Degree Optimal Networks
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Distance Halving

Moni Naor, Udi Wieder
2003



A, Continuous Graphs
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are infinite graphs with
continuous node sets and
edge sets

The underlying graph
- X € [0,1)
- Edges:
(x,x/2), left edges
(x,1+x/2), right edges (x,1/2 + x/2)
- plus revers edges.
(x/2,x)
(1+x/2,x)




,A\ The Transition from Continuous to

reomerg  Discrete Graphs

(x,x/2)

Consider discrete intervals resulting
from a partition of the continuous
space

Insert edge between interval A and
B

- if there exists x e Aand y € B such that
edge (x,y) exists in the continuous graph

Intervals result from successive
partitioning (halving) of existing
intervals

Therefore the degree is constant if

- the ratio between the size of the largest
and smallest interval is constant 0

This can be guarranteed by the
principle of multiple choice

- which we present later on

(x,1/2 + x/2)

(x,x/2)

(x,1/2 + x/2)



A Principle of Multiple Choice
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» Before inserted check c log n positions

» For position p(j) check the distance a(j) between potential left
and right neighbor

» Insert element at position p(j) in the middle between left and
right neighbor, where a(j) was the maximum choice

» Lemma

e After inserting n elements with high probability only intervals of
size 1/(2n), 1/n und 2/n occur.



A\ Proof of Lemma
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1st Part: With high probability there is no interval of size
larger than 2/n

follows from this Lemma
Lemma*

Let c/n be the largest interval. After inserting 2n/c peers
all intervals are smaller than c/(2n) with high probability

From applying this lemma for c=n/2,n/4, ...,4 the first
lemma follows.



A\ Proof
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» 2nd part: No intervals smaller than 1/(2n) occur

e The overall length of intervals of size 1/(2n) before inserting is at
most 1/2

e Such an area is hit with probability at most 1/2
¢ The probability to hit this area more than c log n times is at least
)—¢C logn __ n €

e Then for c>1 such an interval will not further be divided with
probability into an interval of size 1/(4m).



A\ Chernoff-Bound
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Theorem Chernoff Bound
- Let x4,...,xn iIndependent Bernoulli experiments with

Pl = 1]=p
P[x = 0] = 1-p

- Let g _ Zx
=1

- Then for all ¢c>0

1

P Sn > 1+¢)-E Sn < 73 min{c,CQ}pn
- For O=c=1 (S 2 (140) RIS

1.2

P[S, < (1—¢)-E[S,]] < e z¢P"



,A\ Proof of Lemma*®
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Consider the longest interval

of size ¢/n. Then after From the Chernoff bound it
!nsertlng 2n/c peers all follows
intervals are smallver than c/ Q ey
(2n) with high probability. PX<(1-0)EX]|<n°"
Consider an interval of . _
length c/n If 0°t>2  then this
With probability ¢/n such an mtervalawnl be htl't at least
interval will be hit 2(1 —d)tlogn UMES
Assume, each peer )
considers t log n intervals Choose 2(1—-4) >1
The expected number of hits 5> 1 p < 152
is therefore 2
. 2n Then, every interval is
EX|= i : 2n -tlogn = 2tlogn Y

partitioned w.h.p.



A, Lookup in Distance-Halving
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Map start/target
to new-start/
target by using
left edges

Follow all left
edges for 2+ log
n steps

Then, the new-
new...-new-start
and the new-
new-...new-
target are
neighbored.

0 e

new-start start new-target
e
~* A m/\f\
(O U O
new?- new'- new?- new'-
start start target target

lr—ﬂﬁ’}

A

new?-start= new3-  ope-
new’-start target i5rget




A, Lookup in Distance-Halving
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Follow all left start target

edges for 2+ log n N
steps O\/“

_ new-start i "
Use neighbor new-targe

edge to go from

new*-start to | O
new*-target obe newt hews. new'-
start start farget target

Then follow the

reverse left edges | m/‘q /\

NS

from new™m*1. L =
m ew2-start= 3. new?-
target to new™- news-start  taget  target

target



A Structure of Distance-Halving
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Peers are mapped to the intervals
- uses DHT for data

Additional neighbored intervals are connected by
pointers

The largest interval has size 2/n w.h.p.
- i.e. probability 1-n-¢ for some constant c

The smallest interval size 1/(2n) w.h.p.
Then the indegree and outdegree is constant

Diameter is O(log n)
- which follows from the routing



ééi? Lookup 1n Distance-Halving
Freiburg

This works also using only right edges

| target start |
| O Q9 9 |
new-start
new-target
I Y
O-
| A
new'- new? new'- nefvz-
target targe{ start start
I I

NS
| new?- pews-  hew2-start
target  target news-start

27



A, Lookup in Distance-Halving
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This works also using a mixture of right and left edges

targ et start
| .
A




A Congestion Avoidance during Lookup
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Left and right-edges can be used in any ordering
- if one stores the combination for the reverse edges

Analog to Valiant's routing result for the hyper-
cube one can show

The congestion ist at most O(log n),

- i.e. every peer transports at most a factor of O(log n) more
packets than any optimal network would need

The same result holds for the Viceroy network



A, Inserting peers in Distance-Halving
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1. Perform multiple choice principle

* i.e. clog n queries for random intervals
= Choose largest interval
* halve this interval

2. Update ring edges

3. Update left and right edges
* by using left and right edges of the neighbors

Lemma

Inserting peers in Distance Halving needs at most
O(log? n) time and messages.



A, Summary Distance-Halving
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Simple and efficient peer-to-peer network
- degree O(1)
diameter O(log n)

load balancing

traffic balancing

lookup complexity O(log n)
insert O(log2n)

We already have seen continuous graphs in other
approaches

- Chord

- CAN

- Koorde

- ViceRoy
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M. Frans Kaashoek and David R.
Karger 2003



A Shuffle, Exchange, Shuffle-Exchange
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Consider binary string s of length m
- shuffle operation:

shuffle(s, S,, Ss,..., Sy) =
(52,53,-.-» Sm»S1)

- exchange:

- shuffle exchange:
SE(S) = exchange(shuffle(S))
= (S9,53,.+-, Sty ' S1 )
Observation:

Every string a can be transformed into a
string b by at most m shuffle and shuffle
exchange operations

Shuffle

1

1

1

0

—o
w

7

7

7

y_y

y

y

y

111

1

0

1

Exchange

1
—

y

v
1




A, Magic Trick
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Observation

Every string a can be transformed into a
string b by at most m shuffle and shuffle
exchange operations Beispiel:

From o1 1 1 0 1 1
to 1 0 01 1 1 1
via SESESES SE S S

operations

do
=
=
=
=l
Y=
=

¥ ¥ ¥ ¥ ¥
11111]1 11111]1
T
¥ ¥ ¥ F
1w 1111111 1lo
T Vo) el et
7 ¥ ¥ F Fv
1 11111111lo]|o
T, ]
¥ 7 F ¥ ¥V
1111([1]lol|o]| 1
V) )
¥ ¥ F ¥ ¥ ¥
111001/.
T/
¥ 7 F F ¥ ¥
11/1/lo]|0]]1 1
T/
F 7 F ¥ 7 Vv
HoJojjag g

SE
SE

SE

SE

w O



A, The De Bruijn Graph
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A De Bruijn graph consists of </
n=2m nodes, 000

- each representing an m digit binary / \

strings 001 [« 100

Every node has two outgoing 010
edges I
- (u,shuffle(u)) 101

- (u, SE(u)) V_ ‘\>

110

011
Lemma

- The De Bruijn graph has degree 2 /
and diameter log n 111

Koorde = Ring + DeBruijn-Graph Q




A, Koorde = Ring + DeBruijn-Graph
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»Consider ring with 2™ nodes and De Bruijn edges

</
Q‘111 / O(‘)O \001

S

101 \\‘ /}//011

100




A, Koorde = Ring + DeBruijn-Graph
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Note
- shuffle(s1, s2,..., Sm) = (s2,...,
Sm,S1)

shuffle (x) =
(x div 2™1)+(2x) mod 2m

- SE(S) = (s2,83,..., Sm, 7 S1)

SE(x) =
1-(x div 2™-1)+(2x) mod 2™

- Hence: Then neighbors of x
are
2x mod 2™ and

2x+1 mod 2m




A, Virtual DeBruijn Nodes
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To avoid collisions we choose virtual -
DeBrujin-nodes in the
- m > (2+c) log (n) responsibility

~_range of a peer

Then the probability of two
peers colliding is at most nc

But then we have much mor
nodes in the graph than
peers in the network

Solution

- Every peer manages all
DeBruijn nodes between his
position and his successor on
the ring

O(log n) Peers
in the interval of
length

c (log n)/n oM

- only for incoming edges

- outgoing edges are considered
only from the peer’s poisition on
the ring



A, Properties of Koorde
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Theorem

- Every node has four pointers

- Every node has at most O(log n) incoming pointers w.h.p.
- The diameter is O(log n) w.h.p.

- Lookup can be performed in time O(log n) w.h.p.

But:

- Connectivity of the network is very low.



A, Properties of Koorde
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Theorem virtual
. DeBrujin-nodes in the
- 1. Every node has four pointers responsibility

- 2. Every node has at most O(log n) //,fange/,ofa peer

incoming pointers w.h.p.

Proof:

- 1. follows from the definition of the
DeBruijn graph and the
observation that only non-virtual
nodes have outgoing edges

- 2. The distance between two
peers is at most c (log n)/n 2™
with high probability

- The number of nodes pointing to
this distance is therefore at most
c (log n) with high probability

O(log n) Peers
in the interval of
length

c (log n)/n oM




A, Properties of Koorde
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Theorem

- The diameter is O(log n) w.h.p.
- Lookup can be performed in time O(log n) w.h.p.

Proof sketch:

- The minimal distance of two peers is at least n¢ 2™ w.h.p.

- Therefore use only the c log n most significant bits in the
routing

since the prefix guarantees that one end in the responsibility
area of a peer

- Follow the routing algorithm on the De-Bruijn-graph until
one ends in the responsibility area of a peer



éAN‘ Degree k-DeBruijn-Graph

Consider alphabet using k
letters, e.g. k=3

Now, every k-DeBruijn-
node has successors

- (kx mod km)

- (kx +1 mod km)

- (kx+2 mod km)

- ... (kx+k-1 mod km)

Diameter is reduced to
- (log m)/(log k)

Graph connectivity is
Increased to k




A k-Koorde
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Straight-forward
generalization of Koorde
- by using k-DeBruijn graphs

Improves lookup time and
messages to
O((log n)/(log k)) steps

01
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