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Indranil Gupta, Ken Birman,
Prakash Linga, Al Demers,
Robbert van Renesse

- Cornell University, Ithaca, New
York

Kelip-kelip

- malay name for synchronizing
fireflies

P2P Network Copyrights @ 1998 - 2008 by TourMalaysia
- uses DHT

- constant lookup time

- O(n'2) storage size

- fast and robust update



A, Kelips Overview
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Peers are organized in k affinity

groups
- peer position chosen by DHT Affinity Groups
mechanism e O
- k is chosen as n'’2 for n peers C Peers Q O @
\

Data is mapped to an affinity Ind
group using DHT e 6(@ )@ )

- all members of an affinity group Documeft D‘O
O /O

store all data
: I
Routing Table Peers 0.1/ 0O
- each peer knows all members of O ~ O

the affinity group /

- each peer knows at least one ( O C{ O O )
member of each affinity group

Updates

- are performed by epidemic
algorithms



A, Routing Table
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Affinity Group View
- Links to all O(n/k) group members

- This set can be reduced to a partial
set as long as the update
mechanism works

Contacts

- For each of the other affinity group
a small (constant-sized) set of
nodes

- O(K) links
Filetuples

- A (partial) set of tuples, each
detailing a file name and host IP
address of the node storing the file

- O(F/K) entries, if F is the overall
number of files

Memory Usage: O(n/k + k + F/k)
- for g — O(\/n+ F)

Affinity Groups

C Peers O @
Indexer(@ @ >

Document I:I_O O /()

CPeers;/OD
Co & o o)

O(vn +F)




A, Lookup
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Lookup-Algorithm

- compute index
value

- find affinity group
using hash function

- contact peer from
affinity group

- receive index entry
for file (if it exists)

- contact peer with
the document

Kelips needs four
hops to retrieve a
file

Affinity Groups

(e Q% 0 ©)
Indexer(@ﬁ )@ >

DocumntD_Q Q\I //Q
C=E

(o dloo>




A, Inserting a Peer
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Algorithm —~>

First Affinity
Group Neighbor

Every new peer is introduced by a
special peer, group or other method,

e.g. web-page, forum etc.

The new peer computes its affinity
group and contacts any peer

The new peer asks for one contact of ContaCtS TS d
the affinity group and copies the CO ™ o O )

contacts of the old affinity group

New Peer

Introducing Peer

By contacting a neighbor node in the
affinity group it receives all the
necessary contacts and index
filetuples

Every contact is replaced by a
random replacement (suggested by
the contact peer)

The peer starts an epidemic
algorithm to update all links

Affinity
Group Neighbors

Except the epidemic algorithm the (O ,

runtime is O(k) and only O(k)
messages are exchanged




A\ How to Add a Document
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Start an Epidemic Algorithm to Spread the news in the affinity
group

Such an algorithm uses O(n/k) messages and needs O(log n)
time

We introduce Epidemic Algorithms later on



A How to Check Errors
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Kelip works in heartbeats, i.e. discrete timing
n every heartbeat each peer checks one neighbor

f a neighbor does not answer for some time
- it is declared to be dead

- this information is spread by an epidemic algorithm

Using the heartbeat mechanisms all nodes also refresh
their neighbors

Kelips quickly detects missing nodes and updates this
information



A Discussion
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Kelips has lookup time O(1), but needs O(n'?) sized
Routing Table

- not counting the O(F/n"?) file tuples

Chord, Pastry & Tapestry use lookup time O(log n) but only
O(log n) memory units

Kelips is a reasonable choice for medium sized networks

- up to some million peers and some hundred thousands index entries



A\ To Do
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What is an Epidemic Algorithm



A, Epidemic Spread of Viruses
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Observation
- most viruses do not prosper in real life
- other viruses are very successful and spread fast

How fast do viruses spread?
How many individuals of the population are infected?

Problem
- social behavior and infection risk determine the spread

- the reaction of a society to a virus changes the epidemy
- viruses and individuals may change during the infection



A, Mathematical Models
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SI-Model (rumor spreading)

- susceptible — infected

SIS-Model (birthrate/deathrate)

- susceptible — infected — susceptible
SIR-Model

- susceptible — infected — recovered
Continuous models

- deterministic

- or stochastic

Lead to differential equations

Discrete Models
- graph based models
- random call based

Lead to the analysis of Markov Processes



A Infection Models
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SI-Model (rumor spreading)
susceptible — infected
At the beginning one individual is infected

Every contact infects another indiviual
In every time unit there are in the expectation 3 contacts

SIS-Model (birthrate/deathrate)

- susceptible — infected — susceptible

- similar as in the SI-Model, yet a share of 0 of all infected individuals
Is healed and can receive the virus again

- with probability © an individual is susceptible again

SIR-Model

- susceptible — infected — recovered

- like SI-Model, but healed individuals remain immune against the
virus and do not transmit the virus again



,A\ SI-Model
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Variables

- n: total number of individuals

remains constant

- S(t): number of (healthy) susceptible individuals at time t

- I(t): number of infected individuals

Relative shares

- s(t) :=S(t)/n

- i) = 1(t)/n
At every time unit each individual contacts 3 partners
Assumptions:

- Among 3 contact partnres 3 s(t) are susceptible

- All I(t) infected individuals infect 3 s(t) I(t) other individuals in each round
Leads to the following recursive equations:
I(t+1) = I(t) + B s(t) I(t)
i(t+1) = i(t) + Bi(t) s(t)
S(t+1) = S(t) — B s(t) I(t)
s(t+1) =s(t) — Ri(t) s(t)



,A\ SI-Model
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i(t+1) = i(t) + Ri(t) s(t)
s(t+1) =s(t) — Ri(t) s(t)
|dea:

- i(t) is a continuous function
- i(t+1)-i(t) approximate first derivative i(t+1) — z(t) dz’(t)

~/
~~/

1 dt

Solution:




A\ SI-Model
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The number of
infected grows
exponentially until
half of all

members are 75
infected

Then the number
of susceptible
decrease

3
n

exponentially

N
(]

Y




A SIS-Model
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Variables

- n: total number of individuals

remains constant

- S(t): number of (healthy)
susceptible individuals at time t

- I(t): number of infected
individuals

Relative shares

- s(t) := S(t)/n

- i(t) = I(t)/n

At every time unit each

individual contacts 3
partners

Assumptions:

- Among 3 contact partnres 3 s(t)
are susceptible

- All'I(t) infected individuals infect
3 s(t) I(t) other individuals in
each round

- A share of 6 of all infected
individuals is susceptible again

Leads to the following
recursive equations:

- I(t+1) = 1(t) + Ri(t) S(t)— B I(t)
- i(t+1) = i) + Ri(t) s(t) = di(t)
- S(t+1) =S(t)— Ri(t) S(t) + & I(t)
- s(t+1) =s(t)— Bi(t) s(t) + di(t)



,A\ SI-Model
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i(t+1) = i(t) +Bi(t) s(t)— di(t)
s(t+1) =s(t) — Ri(t) s(t) + & i(t)
|dea:
- i(t) is a continuous function
- i(t+1)-i(t) approximate first derivative i(t+1) —i(t) ~ di(t)
| T dt
dr(t) L Lo o
— = a(t)(1 —(t)) — out)
dt o | |
Solution: i(t) = L—p

5 R ) . {0 I



A SIS-Model

Frabarg  INterpretation of Solution

o 1 —p )
i(t) = / =3
| 4 (l p 1) o (B—b)t
"\ i(0)
If3<0
- then i(t) is strictly decreasing
If3>0 ”
- then i(t) converges against
1-p=1-0/ 0

401

Same behavior in discrete model
has been observed

- [Kephart,White‘94] R

201




A, SIR-Model
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Variables - Among 3 contact partnres 3 s(t)
are susceptible

- All I(t) infected individuals infect 3
s(t) I(t) other individuals in each
round

n: total number of individuals
remains constant

- S(t): number of (healthy)
susceptible individuals at time t

- A share of 0 of all infected

- I(t): number of infected individuals is immune (recovered)
individuals and never infected again

- R(t): number or recovered individ. Leads to the following

Relative shares recursive equations:

- s(t) == S(t)/in - I(t+1) = 1) + Ri(t) S(t) — B I(t)

- i(t) = I(t)/n St = i) + R i) — i(t)

- 1(t) == R(t)/n - S(t+1) =S(t)— Ri(t) S(t)

At every time unit each - s(t+1)  =s(t)— Ri(t) s(t)

individual contacts [} partners - R(t+1) =R@) +d1(t)

Assumptions: - r(t+1)

I

]
—~~
~—
N

+
A
—~
~—=
S



A, SIR-Model
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The equations and its ds(t) ,
differential equations e —f - u(t)s(t)
counterpart di(t) . .
i) = i) + B i) = Si(t) i p-i(t)s(t) — 0i(t)
- s(t+1 = s(t) — Ri(t) s(t dr(t
s(t+1) _S() .I()S() r(t) = —si(h)
- r(t+1) = r(t) + 0 i(t) dt
No closed solution known 1
- hence numeric solution :
0.8 3(e)
Example ]
- s(0) =1 061
- i(0) =1.27 106 ]
r(0) =0 0.4-
R =05 f o)
0.2
5 = 0.3333 ] "
(e
o o0 40m 20 140

Days



A, Replicated Databases
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Same data storage at all locations
- new entries appear locally

Data must be kept consistently

Algorithm is supposed to be decentral and robust
- since connections and hosts are unreliable

Not all databases are known to all

Solutions

Unicast
New information is sent to all data servers

Problem:

not all data servers are known and can be reached

Anti-Entropy
Every local data server contacts another one and exchanges all information
total consistency check of all data

Problem

comunication overhead

Epicast ...



A, Epidemic Algorithms
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Epicast

- new information is a rumor

- as long the rumor is new it is distributed
- Is the rumor old, it is known to all servers

Epidemic Algorithm [Demers et al 87]
- distributes information like a virus

- robust alternative to BFS or flooding
Communication method

- Push & Pull, d.h. infection after logz n + O(log log n) rounds with
high probability

Problem:

- growing number of infections increases comunication effort
- trade-off between robustness and communication overhead



A, SI-Model for Graphs
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Given a contact graph G=(V,E)
- n: number of nodes
|(t) := number of infected nodes in round t
i(t) = I(T)/n
S(t) := number of susceptible nodes in round t
I(t)+S(t)=n
s(t) = S(T)/n
Infection:
- If uis infected in round t and (u,v) € E, then v is infected in round t+1

Graph determines epidemics
Complete graph:

- 1 time unit until complete infection
Line graph

- n-1 time units until complete infection



A Epidemics in Static Random Graphs
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Random graph Gn
- n nodes
- Each directed edge occurs with independent probability p
Expected indegre y = p (n—1)
How fast does an epidemic spread in Gnp, if y €O(1) ?
Observation fur n>2:
- With probability 247V and < e

a node has in-degree 0 and cannot be infected

a node has out-degree 0, and cannot infect others
Implications:

- Random (static) graph is not a suitable graph for epidemics



A Random Call Model
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In each round a new contact graph G=(V,Ey):

- Each node in Gt has out-degree 1
chooses random node v out of V

Infection models:

- Push-Model
if u is infected and (u,v) € Et, then v is infected in the next round

- Pull-Modell:
if v is infected and (u,v) € Et, then u is infected in the next round



Push Model

4




A Push Model
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Push Model
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A Push Model
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A\ Push Model
reomerg  Start Phase

3 cases for an infected node
1. it is the only one infecting a new node
2. it contacts an already infected node
3. it infects together with other infected nodes a new node
this case is neglected in the prior deterministic case

- Probability for 1st or 3rd case s(t) = 1-i(t)
- Probability for 2nd case i(t)
- Probability for 3rd case is at most i(t)
since at most i(t) are infected
Probability of infection of a new node, if i(t) < s(t)/2:
- atleast 1 — 2i(t)
E[i(t+1)] = i(t) +i(t)(1 = 2i(t)) = 2i(t) -2i(t)> = 2i(t)



,A\ Push Model

CoNe

rraburg  Otart phase & Exponential Growth

If i(t) < s(t)/2: Proof by Chernoff-Bounds
- E[i(t+1)] = 2i(t) - 2i(t)2 = 2i(t) - For independent random
. . . - and any e

- Variance of i(t+1) relatively large <o <1
- Exponential growth starts after e

some O(1) with high probability P[X,, < (1—=0E[X,] < e FEXnl?
Exponential growth:
I(t) € [2 ¢ (In n)?, n/(log n)] - Let 8 =1/(Inn)
- Nearly doubling of infecting - E[X;] = 2c(Inn)®

nodes with high probability, i.e. 1- ~ Then 2 E[X.]/2=cInn

O(n°) "

- This implies

P[X,, < (1—0)E[X,]] < e_cng[‘\"’"J/z < ¢



/A\ Push Model

reavare  Middle Phase & Saturation

Probability of infections of a new
node if i(t) = s(t)/2: 1 — 2i(t)

- E[i(t+1)] = 2i(t) - 2i(t)2 ~ 2i(t)

Middle phase I(t) € [n/(log n), n/3]
- term 2i(t)2 = 2i(t)/(log n) cannot
be neglected anymore

- Yet, 2i(t) — 2i(t)? = 4/3 i(t) still
implies expontential growth,
but with base < 2

Saturation: I(t) = n/3

- Probability that a susceptible
node is not contacted by I(t) = ¢
n infected nodes:

| J_ cn | l n C l
l——) =((1-- < —
n n e

This implies a constant
probability for infection = 1 — e~
Bund <1 -e

Hence
E[s(t+1)] < eV s(t) < 173 s(t)

Chernoff-bounds imply that this
holds with high probability

Exponential shrinking of
susceptible nodes

Base converges to 1/e



Push Model
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logn

Time

O(log n)

O(log log n)
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A Random Call Model
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Infection models:

- Push Model

if u is infected and (u,v) € E, then v is infected in the next
round

- Pull Model

if v is infected and (u,v) € Et, then u is infected in the next
round



Pull Model
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Pull Model
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Pull Model
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Pull Model
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Pull Model
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A Pull Model
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Consider

- an susceptible node and I(t)
infected nodes

Probability that a susceptible node

contacts an infected node: i(t)

- E[s(t+1)]

= s(t) —s(t)i(t)

= s(t) (1-i(t)) = s(t)
- E[i(t+1)]

= 1-s(t)?

=1-(1-i)y

=2i(t) —i(t2 = 2i(t)

for small i(t)

Problem

- ifi(t) £ (log n)? then exponential
growth is not with high probability

- O(log n) steps are needed to start
eh growth with high probability

yet in the expectation it grows
exponentially

After this phase
- Ifs(t) <74
then the share of susceptible
nodes is squared in each step
- This implies E[s(t+ O(log log n))] =0,

- Ifi(t) = Y2 then after O(log log n) steps
all nodes are infected with high
probability
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Pull Model

Iogzn log log n

O(log n)
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A, Push&Pull Model
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Combines growth of Push and Pull Quadratic shrinking: I(t) = n/3

Start phase: i(t) < 2 ¢ (In n)? -

- Push causes doubling of i(t) after -
O(1) rounds with high probability

Exponential growth:
I(t) € [2 ¢ (In n)2, n/(log n)]

- Push and Pull nearly triple in each -
round with high probability:

i(t+1) = 3 (1-1/(log n)) i(t)
Middle phase: I(t) € [n/(log n), n/3]
- Push and Pull

slower exponential growth

caused by Pull:
E[s(t+1)] < s(t)?

The Chernoff bound implies with
high probability

s(t+1) < 2s(t)?
so after two rounds for s(t) < 1/2172
s(t+2) < s(t)2w.h.p.



Push&Pull Model
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Time

Bunjuliys onespend) |

UIModn |eljusauodx3

SJeIp_uLISII]

polylogn +---;

log log n Iog3n O(log log n)




A, Max-Counter Algorithm
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Simple termination strategy

- If the rumor is older than maxct, then stop transmission
Advantages

- simple

Disadvantage

- Choice of maxct is critical

- If maxctr is too small then not all nodes are informed

- If maxct is too large, then the message overhead is Q(n maXct)
Optimal choice for push-communication

- maXcr = O(log n)

- Number of messages: O(n log n)

Pull communication

- maxXctr = O(log n)

- Number of messages: O(n log n)

Push&Pull communication

- maxctr = logsn + O(log log n)

- Number of messages: O(n log log n)



A, Shenker‘s Min-Counter Algorithm
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Only is the rumor is seen as old then contact partners increase the age-
counter
Shenkers Min-Counter-Algorithmus far maxc = O( log log n)
Every player P stores age-variable ctrr(P) for each rumor R
A: player P does not know the rumor:
ctrr(P) < 1
B: If player P sees rumor for the first time
ctrr(P) « 1
B: If partners Q1, Qg, ..., Qm communicate with P in a round
If mini{ctrr(Qi)} 2 ctrr(P) then
ctrr(P) « ctrr(P) + 1
C: If ctrr(P) = maxc then
tell the rumor for maxct more rounds

then D: stop sending the rumor
Theorem

- Shenkers Min-Counter algorithms informs all nodes using Push&Pull-communication
in logasn + O(log log n) rounds with probability 1-n~¢,
using at most O(n log log n) messages.



A.  Shenker‘s Min-Counter-Algorithm
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Theorem

- Shenkers Min-Counter
algorithms informs all
nodes using Push&Pull-
communication in
logsn + O(log log n)
rounds with probability
1-n7¢, using at most state A
O(n log log n) messages.

players in

-~

-+— < IO% n—>| <— O(log log n)—
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