

Peer-to-Peer Networks 13 Security

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

UNI FREIBURG

Attacks CoNe Freiburg

- Denial-of-Service Attacks (DoS)
 - or distributed denial of service attacks (DDoS)
 - one or many peers ask for a document
 - peers are slowed down or blocked completely
- Sybil Attacks
 - one attacker produces many fake peers under new IP addresses
 - or the attacker controls a bot-net
- Use of protocol weaknesses
- Infiltration by malign peers
 - Byzantine Generals

- Timing attacks
 - messages are slowed down
 - communication line is slowed down
 - a connection between sender and receiver can be established
- Poisoning Attacks
 - provide false information
 - wrong routing tables, wrong index files etc.
- Eclipse Attack
 - attack the environment of a peer
 - disconnect the peer
 - build a fake environment

Solutions to the Sybil Attack

- Survey paper by Levine, Shields, Margonin, 2006
- Trusted certification
 - only approach to completely eleminate Sybil attacks
 - according to Douceur
 - relies on centralized authority
- No solution
 - know the problem and deal with the consequences
- Resource testing
 - real world friends

- test for real hardware or addresses
 - e.g. heterogeneous IP addresses
- check for storing ability
- Recurring cost and fees
 - give the peers a periodic task to find out whether there is real hardware behind each peer
 - wasteful use of resources
 - charge each peer a fee to join the network
- Trusted devices
 - use special hardware devices which allow to connect to the network

Solutions to the Sybil Attack

- Survey paper by Levine, Shields, Margonin, 2006
- In Mobile Networks
 - use observations of the mobile node
 - e.g. GPS location, neighbor nodes, etc.
- Auditing
 - perform tests on suspicious nodes
 - or reward a peer who proves that it is not a clone peer

- Reputation Systems
 - assign each peer a reputation which grows over the time with each positive fact
 - the reputation indicates that this peer might behave nice in the future
 - Disadvantage:
 - peers might pretend to behave honestly to increase their reputation and change their behavior in certain situations
 - problem of Byzantine behavior

The Problem of Byzantine Generals

- 3 armies prepare to attack a castle
- They are separated and communicate by messengers
- If one army attacks alone, it loses
- If two armies attack, they win
- If nobody attacks the castle is besieged and they win
- One general is a renegade
 - nobody knows who

The Problem of Byzantine Generals

- The evil general X tries
 - to convince A to attack
 - to convince B to wait
- A tells B about X's command
- B tells B about his version of X's command
 - contradiction
- But is A, B, or X lying?

The Problem of Byzantine Generals

- The evil general X tries
 - to convince A to attack
 - to convince B to wait
- A tells B about X's command
- B tells B about his version of X's command

C. Y.

U.S.C.

- contradiction
- But is A, B, or X lying?

7

Attack

A Byzantine Agreement Freiburg

- Theorem
 - The problem of three byzantine generals cannot be solved (without cryptography)
 - It can be solved for 4 generals
- Consider: 1 general, 3 officers problem
 - If the general is loyal then all loyal officers will obey the command
 - In any case distribute the received commans to all fellow officers
 - What if the general is the renegade?

A Byzantine Agreement Freiburg

- Theorem
 - The problem of four byzantine generals can be solved (without cryptography)
- Algorithm
 - General A sends his command to all other generals
 - A sticks to his command if he is honest
 - All other generals forward the received command to all other generals
 - Every generals computes the majority decision of the received commands and follows this command

Byzantine Agreement

Theorem

CoNe Freiburg

- The problem of four byzantine generals can be solved (without cryptography)
- Algorithm

- General A sends his command to all other generals
 - A sticks to his command if he is honest
- All other generals forward the received command to all other generals
- Every generals computes the majority decision of the received commands and follows this command

- Theorem
 - If m generals are traitors then 2m+1 generals must be honest to get a Byzantine Agreement
- This bound is sharp if one does not rely on cryptography
- Theorem
 - If a digital signature scheme is working, then an arbitrarily large number of betraying generals can be dealt with
- Solution
 - Every general signs his command
 - All commands are shared together with the signature
 - Inconsistent commands can be detected
 - The evildoer can be exposed

P2P and Byzantine Agreement

- Digital signature can solve the problem of malign peers
- Problem: Number of messages
 - $O(n^2)$ messages in the whole network (for n peers)
- In "Scalable Byzantine Agreement" von Clifford Scott Lewis und Jared Saia, 2003
 - a scalable algorithm was presented
 - can deal with n/6 evil peers
 - if they do not influence the network structure
 - use only O(log n) messages per node in the expectation
 - find agreement with high probability

Network of Lewis and Saia

- Butterfly network with clusters of size c log n
 - clusters are bipartite expander graphs
 - Bipartite graph
 - is a graph with disjoint node sets A and B where no edges connect the nodes within A or within B
 - Expander graph
 - A bipartite graph is an expander graph if for each subset X of A the number of neighbors in B is at least c|X| for a fixed constant c>0
 - · and vice versa for the subsets in B

- Advantage
 - Very efficient, robust and simple method
- Disadvantage
 - Strong assumptions
 - The attacker does not know the internal network structure
- If the attacker knows the structure
 - Eclipse attack!

A Cuckoo Hashing for Security

- Awerbuch, Scheideler, Towards Scalable and Robust Overlay Networks
- Problem:
 - Rejoin attacks
- Solution:
 - Chord network combined with
 - Cuckoo Hashing
 - Majority condition:
 - honest peers in the neighborhood are in the majority
 - Data is stored with O(log n) copies

Fig. 1. Examples of CUCKOO HASHING insertion. Arrows show possibilities for moving keys. (a) Key x is successfully inserted by moving keys y and z from one table to the other. (b) Key x cannot be accommodated and a rehash is necessary.

From Cuckoo Hashing Rasmus Pagh, Flemming Friche Rodler 2004

UNI FREIBURG

A Efficiency of Cuckoo Hashing

- Theorem
 - Let ϵ >0 then if at most n elements are stored, then Cuckoo Hashing needs a hash space of $2n+\epsilon$.
- Three hash functions increase the load factor from 1/2 to 91%
- Insert
 - needs O(1) steps in the expectation
 - O(log n) with high probability
- Lookup
 - needs two steps

- Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari Balakrishnan (2001)
- Distributed Hash Table
 - range {0,..,2^m-1}
 - for sufficient large m
- for this work the range is seen as
 [0,1)
- Network
 - ring-wise connections
 - shortcuts with exponential increasing distance

For each peer

- successor link on the ring
- predecessor link on the ring
- for all $i \in \{0,...,m\text{--}1\}$
 - Finger[i] := the peer following the value r_V(b+2ⁱ)s
- For small i the finger entries are the same
 - store only different entries
- Chord
 - needs O(log n) hops for lookup
 - needs O(log² n) messages for inserting and erasing of peers

A Cuckoo Hashing for Security

- Given n honest peers and ε n dishonest peers
- Goal
 - For any adversarial attack the following properties for every interval I ⊆ [0, 1) of size at least (c log n)/n we have
 - Balancing condition
 - I contains $\Theta(|I| \cdot n)$ nodes
 - Majority condition
 - the honest nodes in I are in the majority
- Then all majority decisions of O(log n) nodes give a correct result

- Secure hash functions for positions in the Chord
 - if one position is used
 - then in an O(log n) neighborhood more than half is honest
 - if more than half of al peers are honest
- Rejoin attacks
 - use a small number of attackers
 - check out new addresses until attackers fall in one interval
 - then this neighborhood can be ruled by the attackers

The Cuckoo Rule for Chord

Notation

- a region is an interval of size 1/2^r in [0, 1) for some integer r that starts at an integer multiple of 1/2^r
- There are exactly 2^r regions
- A k-region is a region of size (closest from above to) k/n, and for any point $x \in [0, 1)$
- the k-region R_k(x) is the unique k-region containing x.
- Cuckoo rule
 - If a new node v wants to join the system, pick a random x ∈ [0, 1).

- Place v into x and move all nodes in R_k(x) to points in [0, 1) chosen uniformly at random
 - (without replacing any further nodes).
- Theorem
 - For any constants ε and k with ε < 1-1/k, the cuckoo rule with parameter k satisfies the balancing and majority conditions for a polynomial number of rounds, with high probability, for any adversarial strategy within our model.
 - The inequality $\epsilon < 1 1/k$ is sharp

BURG

- Data storage
 - each data item is stored in the O(log³ n) neighborhood as copies
- Primitives
 - robust hash functions
 - safe against attacks
 - majority decisions of each operation
 - use multiple routes for targeting location

- Lookup
 - works correctly with high probability
 - can be performed with O(log⁵n) messages
- Inserting of data
 - works in polylogarithmic time
 - needs O(log⁵ n) messages
- Copies stored of each data: O(log³n)

- Advantage
 - Cuckoo Chord is safe against adversarial attacks
 - Cuckoo rule is simple and effective
- Disadvantage
 - Computation of secure hash function is complex
 - Considerate overhead for communication
- Theoretical breakthrough
- Little impact to the practical world

Peer-to-Peer Networks 13 Security

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

UNI FREIBURG