

Peer-to-Peer Networks 14 Network Coding

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

FREIBURG

- Motivation
 - Transmission of a data stream to many receivers.
- Unicast
 - For each stream message have to be sent separately
 - Bottleneck at sender
- Multicast
 - Stream multiplies messages
 - No bottleneck

Working Principle

- IPv4 Multicast Addresses
 - class D
 - outside of CIDR (Classless Interdomain Routing)
 - 224.0.0.0 239.255.255.255
- Hosts register via IGMP at this address
 - IGMP = Internet Group Management Protocol
 - After registration the multicast tree is updated
- Source sends to multicast address
 - Routers duplicate messages
 - and distribute them into sub-trees
- All registered hosts receive these messages
 - ends after Time-Out
 - or when they unsubscribe
- Problems
 - No TCP only UDP

Routing Protocols

Host **Distance Vector Multicast Routing** Protocol (DVMRP) - used for years in MBONE particularly in Freiburg - own routing tables for multicast Router Protocol Independent Multicast (PIM) Host in Sparse Mode (PIM-SM) -Router current (de facto) standard Rendezvous Punkt prunes multicast tree _ uses Unicast routing tables is more independent from the routers -Prerequisites of PIM-SM: Source needs Rendezvous-Point (RP) in one hop distance **RP** must provide PIM-SM or tunneling to a proxy in the vicinity of the RP

http://www.cisco.com/en/US/products/hw/switches /ps646/products_configuration_guide_chapter091 86a008014f350.html

CoNe Freiburg

IP Multicast Seldomly Available

- IP Multicast is the fastest download method
- Yet, not many routers support IP multicast
 - -http://www.multicasttech.com/status/

The Percentage of the Internet Supporting Multicast

Why so few Multicast Routers?

- Despite successful use
 - in video transmission of IETF-meetings
 - MBONE (Multicast Backbone)
- Only few ISPs provide IP Multicast
- Additional maintenance
 - difficult to configure
 - competing protocols
- Enabling of Denial-of-Service-Attacks
 - Implications larger than for Unicast

- Transport protocol
 - only UDP
 - Unreliable
 - Forward error correction necessary
 - or proprietary protocols at the routers (z.B. CISCO)
- Market situation
 - consumers seldomly ask for multicast

Scribe & Friends

- Multicast-Tree in the Overlay Network
- Scribe [2001] is based on Pastry
 - Castro, Druschel, Kermarrec, Rowstron
- Similar approaches
 - CAN Multicast [2001] based on CAN
 - Bayeux [2001] based on Tapestry
- Andere Ansätze
 - Overcast ['00] and Narada ['00]
 - construct multi-cast trees using unicast connections
 - do not scale

How Scribe Works

- Create
 - GroupID is assigned to a peer according to Pastry index
- Join
 - Interested peer performs
 lookup to group ID
 - When a peer is found in the Multicast tree then a new subpath is inserted
- Download
 - Messages are distributed using the multicast tree
 - Nodes duplicate parts of the file

Scribe Optimization

Bottleneck-Remover

- If a node is overloaded then from the group of peers he sends messages
- Select the farthest peer
- This node measures the delay between it and the other nodes
- and rebalances itself under the next (then former) brother

- Multicast trees discriminate certain nodes
- Lemma
 - In every binary tree the number of leaves = number of internal nodes +1
- Conclusion
 - Nearly half of the nodes distribute data
 - While the other half does not distribute any data
 - An internal node has twice the upload as the average peer
- Solution: Larger degree?
- Lemma
 - In every node with degree d the number of internal nodes k und leaves b we observe

• (d-1) k = b -1

- Implication
 - Less peers have to suffer more upload

Split-Stream

- Castro, Druschel, Kermarrec, Nandi, Rowstron, Singh 2001
- Idea
 - Partition a file of size into k small parts
 - For each part use another multicast tree
 - Every peer works as leave and as distributing internal tree node
 - except the source
- Ideally, the upload of each node is at most the download

- Bram Cohen
- Bittorrent is a real (very successful) peer-to-peer network
 - concentrates on download
 - uses (implicitly) multicast trees for the distribution of the parts of a file
- Protocol is peer oriented and not data oriented
- Goals
 - efficient download of a file using the uploads of all participating peers
 - efficient usage of upload
 - usually upload is the bottleneck
 - e.g. asymmetric protocols like ISDN or DSL
 - fairness among peers
 - seeders against leeches
 - usage of several sources

- Central coordination
 - by tracker host
 - for each file the tracker outputs a set of random peers from the set of participating peers
 - in addition hash-code of the file contents and other control information
 - tracker hosts to not store files
 - yet, providing a tracker file on a tracker host can have legal consequences
- File
 - is partitions in smaller pieces
 - as describec in tracker file
 - every participating peer can redistribute downloaded parts as soon as he received it
 - Bittorrent aims at the Split-Stream idea
- Interaction between the peers
 - two peers exchange their information about existing parts
 - according to the policy of Bittorrent outstanding parts are transmitted to the other peer

- Problem
 - The Coupon-Collector-Problem is the reason for a uneven distribution of parts
 - · if a completely random choice is used
- Measures
 - Rarest First
 - · Every peer tries to download the parts which are rarest
 - density is deduced from the comunication with other peers (or tracker host)
 - in case the source is not available this increases the chances the peers can complete the download
 - Random First (exception for new peers)
 - When peer starts it asks for a random part
 - Then the demand for seldom peers is reduced
 - especially when peers only shortly join
 - Endgame Mode
 - if nearly all parts have been loaded the downloading peers asks more connected peers for the missing parts
 - · then a slow peer can not stall the last download

- Goal
 - self organizing system
 - good (uploading, seeding) peers are rewarded
 - bad (downloading, leeching) peers are penalized
- Reward
 - good download speed
 - un-choking
- Penalty
 - Choking of the bandwidth
- Evaluation
 - Every peers Peers evaluates his environment from his past experiences

- Every peer has a choke list
 - requests of choked peers are not served for some time
 - peers can be unchoked after some time
- Adding to the choke list
 - Each peer has a fixed minimum amount of choked peers (e.g. 4)
 - Peers with the worst upload are added to the choke list
 - and replace better peers
- Optimistic Unchoking
 - Arbitrarily a candidate is removed from the list of choking candidates
 - the prevents maltreating a peer with a bad bandwidth

CoNe Freiburg

Network Coding

- R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)
- Example
 - Bits x and y need to be transmitted
 - Every line transmits one bit
 - If only bits are transmitted
 - then only x or y can be transmitted in the middle?
 - By using X we can have both results at the outputs

CoNe Freiburg

Network Coding

- R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)
- Theorem [Ahlswede et al.]
 - There is a network code for each graph such that each node receives as much information as the maximum flow of the corresponding flow problem

Galois Fields

- GF(2^w) = Finite Field over 2^w elements
 - Elements are all binary strings of length w
 - $0 = 0^{w}$ is the neutral element for addition
 - $1 = 0^{w-1}1$ is the neutral element for multiplication
- u + v = bit-wise Xor of the elements
 - e.g. 0101 + 1100 = 1001
- a b= product of polynomials modulo 2 and modulo an irreducible polynomial q
 - i.e. $(a_{w-1} \dots a_1 a_0) (b_{w-1} \dots b_1 b_0) =$ $((a_0 + a_1 x + \dots + a_{w-1} x^{w-1})(b_0 + b_1 x + \dots + b_{w-1} x^{w-1}) \mod q(x)) \mod 2)$

Example: $GF(2^2)$

Generated	Polynomial	Binary	Decimal			
Element	Element	Element b	Representation			
of $GF(4)$	of $GF(4)$	of $GF(4)$	of b			
0	0	00	0			
x^0	1	01	1			
x^1	x	10	2			
x^2	x^2 $x+1$		3			

CoNe Freiburg

+	0 = 00	1 = 01	2 = 10	3 = 11
0 =00	0	1	2	3
1 =01	1	0	3	2
2 =10	2	3	0	1
3 =11	3	2	1	0

$$q(x) = x^2 + x + 1$$

*	0 = 0	1 = 1	2 = x	3 = x+1
0 = 0	0	0	0	0
1 = 1	0	1	2	3
2 = x	0	2	3	1
3 = x+1	0	3	1	2

 $2 \cdot 3 = x(x+1) = x^2 + x = 1 \mod x^2 + x + 1 = 1$ $2 \cdot 2 = x^2 = x+1 \mod x^2 + x + 1 = 3$

Irreducible Polynomials

- Irreducible polynomials cannot be factorized
 - counter-example: $x^2+1 = (x+1)^2 \mod 2$
- Examples:
 - w=2: x²+x+1
 - w=4: x⁴+x+1
 - w=8: $x^{8}+x^{4}+x^{3}+x^{2}+1$
 - w=16: $x^{16}+x^{12}+x^3+x+1$
 - w=32: x³²+x²²+x²+x+1
 - w=64: $x^{64}+x^4+x^3+x+1$

Fast Multiplication

- Powers laws
 - Consider: {2⁰, 2¹, 2²,...}
 - $= \{ x^0, x^1, x^2, x^3, \dots \}$
 - = exp(0), exp(1), ...
- exp(x+y) = exp(x) exp(y)
- Inverse: log(exp(x)) = x
 - $\log(x \cdot y) = \log(x) + \log(y)$
- $x y = \exp(\log(x) + \log(y))$
 - Warning: integer addition!!!
- Use tables to compute exponential and logarithm function

CoNe Freiburg

Example: GF(16)

q(x)	= x ⁴ +x+1	
------	-----------------------	--

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
exp(x)	1	x	X ²	X ³	1+x	X+X ²	X ² + X ³	1+x+ x ³	1+x ²	X+X ³	1+x+ x ²	X+X ² +X ³	1+x+ x ² +x ³	1+x² +x³	1+x ³	1
exp(x)	1	2	4	8	3	6	12	11	5	10	7	14	15	13	9	1

x	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
log(x)	0	1	4	2	8	5	10	3	14	9	7	6	13	11	12

- 5 · 12 = $\exp(\log(5) + \log(12)) = \exp(8+6) = \exp(14) = 9$

- 7 · 9 = $\exp(\log(7) + \log(9)) = \exp(10 + 14) = \exp(24) = \exp(24 - 15)$ = $\exp(9) = 10$

- Christos Gkantsidis, Pablo Rodriguez Rodriguez, 2005
- Goal
 - Overcoming the Coupon-Collector-Problem
 - a file of m parts can be always reconstructed if at least m network codes have been received
 - Optimal transmission of files within the available bandwidth
- Method
 - Use codes as linear combinations of a file
 - Produced code contains the vector and the variables
 - During the distribution the linear combination are re-combined to new parts
 - The receiver collects the linear combinations
 - and reconstructs the original file using matrix operations

Coding and Decoding CoNe Freiburg

- File: x₁, x₂, ..., x_m
- Codes: y₁,y₂,...,y_m
- Random Variables r_{ij}

$$\begin{array}{c} \begin{array}{c} & & \\ \mathbf{x}_{1}, \mathbf{y}_{2}, \dots, \mathbf{y}_{m} \\ \mathbf{y}_{2}, \dots, \mathbf{y}_{m} \\ \mathbf{y}_{2}, \dots, \mathbf{y}_{m} \\ \mathbf{y}_{m} \end{array} & \begin{pmatrix} r_{i1}r_{i2} \dots r_{im} \\ \vdots \\ r_{m1} \end{array} & \begin{pmatrix} r_{1m} \\ \vdots \\ r_{m1} \end{array} & \begin{pmatrix} x_{1} \\ \vdots \\ r_{mm} \end{pmatrix} = \begin{pmatrix} y_{1} \\ \vdots \\ y_{m} \end{pmatrix} \\ = \begin{pmatrix} y_{1} \\ \vdots \\ y_{m} \end{pmatrix}$$

If the matrix is invertable then

$$\left(\begin{array}{c} x_1\\ \vdots\\ x_m\end{array}\right) = \left(\begin{array}{ccc} r_{11} & \dots & r_{1m}\\ \vdots & \ddots & \vdots\\ r_{m1} & \dots & r_{mm}\end{array}\right)^{-1} \cdot \left(\begin{array}{c} y_1\\ \vdots\\ y_m\end{array}\right)$$

Speed of Network-Coding

Comparison

- Network-Coding (NC) versus
- Local-Rarest (LR) and
- Local-Rarest+Forward-Error-Correction (LR+FEC)

Problems of Network-Coding

- Overhead of storing of variables
 - per block one variable vector
 - e.g. 4 GB file with 100 kB blocks
 - 4 GB/100 KB = 40 kB
 - Overhead of 40%
 - better: 4 GB und 1 MB-Block
 - 4kB Overhead = 0,4%
- Overhead of Decoding
 - Inversion of a m x m- Matrix needs time O(m³)
- Read/Write Accesses
 - For writing m blocks each part must be read m times
 - Disk access is much slower than memory access

CoNe Freiburg

Pair-Coding

- Paircoding: Improving File Sharing Using Sparse Network Codes Christian Ortolf Christian Schindelhauer Arne Vater
- Model Description
 - Round model
 - complete information of the system can be described by file sharing state γ(p,t) of each peer p after round t.
 - It is defined as the set of all code blocks that are available at peer p after round t.
 - Progress of a peer
 - number of indepdendent code blocks at a peer at round t
 - Availability at a set of peers
 - number of independent code blocks at the peers of the set divided by the number of code blocks

- Round model
 - In each round each peer can upload and download a bounded number of blocks of the document
- Peers do not know the future
- Progress
 - number of (independent encoded) blocks that are available at the end of the rounds

Policy and Outperforming

- Policy of a scheme
 - algorithmic choice of encoding of a block in a round
 - determine the efficiency of a scheme
- Policies of Bittorrent
 - chosen to optimize throughput and fairness
- A scheme A is at least as good as B
 A ≥ B
 - if for every scenario and every policy of B there is a policy in A such that A performs as well as B in all scenarios.

CoNe Freiburg

Network Coding

- Practical Network
 Coding
 - is the best possible method
 - as long as the underlying finite base is large enough
- But:
 - Decoding needs
 O(m) read/write
 operations

Pair Coding

- Pair Coding
 - is a reduced form of Network Coding
 - Only two components are combined
- Theorem
 - For all scenarios Pair-Coding is at least as efficient as Bittorrent
 - For some scenarios
 Pair-Coding is more
 efficient than Bittorrent
 - Encoding and Decoding can be performed with (almost) linear number of Read/Write-Operations

The Random Policy

- Scenario
 - one seeder
 - one downloading peer
- Seeder sends a random block in each round

Figure 8. Simulation of decodability for one peer

Availability CoNe Freiburg

Scenario:

- p peers
- one seeder
- every peer receives n/p+1 blocks from the seed
- then the seed disappears

Figure 9. Simulation of availability for increasing number of peers

Peer-to-Peer Networks 14 Network Coding

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

FREIBURG