

Peer-to-Peer Networks 15 Game Theory

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

Literature

- Feldman, Chuang "Overcoming Free-Riding Behavior in Peer-to-Peer Systems", 2005
- Feldman, Lai, Stoica, Chuang, "Robust Incentive Techniques for Peer-to-Peer Networks", 2004
- Shneidman, Parkes, "Rationality and Self-Interest in Peer to Peer Networks"

Motivation

- Traditional system design
 - assume obedient users
 - follow specific protocol without consideration
 - classes of nodes:
 - correct/obedient
 - faulty
 - fail-stop
 - message dropping
 - Byzantine failure

- P2P
 - have rational users
 - maximize own utility
 - may deviate from the protocol
 - classes of nodes
 - rational
 - optimize own utility
 - can include "tricky" behavior
 - irrational
 - altruistic
 - malign cheating

Examples

Gnutella

- study by Adar & Huberman 2000
 - ~70% of peers provide no files (free-riders)
 - top 1% provide 37% of all files
- similar patterns in studies of Napster
- in 2005: 85% of all Gnutella users are free-riders

Selfish Behavior in P2P

Reasons

- Psychology of users
- Lack of central authority
- Highly dynamic memberships
- Availability of cheap identities
- Hidden or untraceable actions
- Deceitful behavior

Implications

- Success of P2P networks must take into account economic behavior of users

Typical Features of Peer to Peer Systems

Social dilemma

 defective behavior (not uploading) is rational behavior, i.e. maximise the utility

Asymmetric transactions

- a peer wants a service
- another provides this service

Untraceable defections

- it is not clear which peer declines a service

Dynamic population

- peers change the behavior
- peers enter and leave the system

Incentives for Cooperation

- Inherent generosity
- Monetary payment schemes
- Reciprocity-based schemes

Inherent Generosity

- Standard model of behavioral economics
 - based on purely self-interest
 - does not explain all behavior of people
- User generosity has a great impact on existing peer-to-peer systems
 - can be determined analytically

Monetary Payment Schemes

- Golle, Leyton-Brown, Mironov, Lillibridge 2001, "Incentives for Sharing in peer-to-peer Networks"
 - consider free-rider problem in Napster
 - assume selfish behavior
 - if all peers are selfish this leads to the strict Nash equilibrium
 - introduce micro-payment system to overcome this problem
 - encourage positive behavior by virtual money

Basics of Game Theory

- Prisoner's dilemma (Flood&Drescher 1950)
 - two suspects arrested
 - if one testifies and the other remains silent then the witness is released the other serves 10 years prison
 - if both testify then both serve 7 years prison
 - if no one testify then they receive 2 years prison
- Best social strategy
 - no one testifies
- Nash equilibrium
 - for a constant choice of the other party each player optimizes his benefit
 - if both talk then there is a Nash equilibrium

	A talks	A is silent
B talks	A: -7 B: -7	A: -10 B: 0
B is silent	A: 0 B: -10	A: -2 B: -2

Dominant Strategy

Dominant strategy

- a strategy is dominant if it is always better than every other strategy
- in the prisoner's dilemma every player has a dominant strategy
 - talk!

Nash equilibrium

- for a constant choice of the other party each player optimizes his benefit
- if both talk then there is a Nash equilibrium
- is not necessary Pareto-optimal

	A talks	A is silent
B talks	A: -7 B: -7	A: -10 B: 0
B is silent	A: 0 B: -10	A: -2 B: -2

Prisoner's Dilemma of Peer to Peer Filesharing

- Rational strategy for downloading peer:
 - Download
- Rational strategy for uploading peer:
 - Don't upload
- Nash equilibrium
 - Uploader rejects upload for downloader

	U: Peer uploads	U: Peer rejects upload
D: Peer downloads	D: 10 U: -1	D: 0 U: 0
D: Peer does not download	D: 0 U: 0	D: 0 U: 0

Bittorrent

- Bram Cohen
- Bittorrent is a real (very successful) peer-to-peer network
 - concentrates on download
 - uses (implicitly) multicast trees for the distribution of the parts of a file
- Protocol is peer oriented and not data oriented
- Goals
 - efficient download of a file using the uploads of all participating peers
 - efficient usage of upload
 - usually upload is the bottleneck
 - e.g. asymmetric protocols like ISDN or DSL
 - fairness among peers
 - seeders against leeches
 - usage of several sources

Bittorrent Coordination and File

Central coordination

- by tracker host
- for each file the tracker outputs a set of random peers from the set of participating peers
 - in addition hash-code of the file contents and other control information.
- tracker hosts to not store files
 - yet, providing a tracker file on a tracker host can have legal consequences

File

- is partitions in smaller pieces
 - as described in tracker file
- every participating peer can redistribute downloaded parts as soon as he received it
- Bittorrent aims at the Split-Stream idea
- Interaction between the peers
 - two peers exchange their information about existing parts
 - according to the policy of Bittorrent outstanding parts are transmitted to the other peer

Bittorrent Part Selection

Problem

- The Coupon-Collector-Problem is the reason for a uneven distribution of parts if a completely random choice is used

Measures

- Rarest First
 - Every peer tries to download the parts which are rarest
 - density is deduced from the comunication with other peers (or tracker host)
 - in case the source is not available this increases the chances the peers can complete the download

- Random First (exception for new peers)
 - When peer starts it asks for a random part
 - Then the demand for seldom peers is reduced
 - especially when peers only shortly join
- Endgame Mode
 - if nearly all parts have been loaded the downloading peers asks more connected peers for the missing parts
 - then a slow peer can not stall the last download

Bittorrent Policy

Goal

- self organizing system
- good (uploading, seeding) peers are rewarded
- bad (downloading, leeching) peers are penalized

Reward

- good download speed
- un-choking

Penalty

- Choking of the bandwidth

Evaluation

- Every peers Peers evaluates his environment from his past experiences

Bittorrent Choking

- Every peer has a choke list
 - requests of choked peers are not served for some time
 - peers can be unchoked after some time
- Adding to the choke list
 - Each peer has a fixed minimum amount of choked peers (e.g. 4)
 - Peers with the worst upload are added to the choke list
 - and replace better peers
- Optimistic Unchoking
 - Arbitrarily a candidate is removed from the list of choking candidates
 - the prevents maltreating a peer with a bad bandwidth

Alternatives for BitTorrent

- Rational strategy for downloading peer:
 - Download
- Rational strategy for uploading peer:
 - Now: upload
- Nash equilibrium
 - Uploading and Downloading

	U: Peer uploads	U: Peer rejects upload
D: Peer downloads	D: 7 U: 3	D: 0 U: 0
D: Peer does not download	D: 0 U: 0	D: 0 U: 0

Other Possible Mechanisms: Monetary Payment Schemes

Advantage

- allow to use economic mechanisms
- charge free-riders for misbehavior
- Disadvantage
 - require infrastructure for accounting and micropayments
- Major problems
 - how to encourage truthful relevation of costs
 - solution: Vickrey-Clarke-Groves (VCG-mechanisms)
 - strategyproof mechanism
 - encourage truthful revelation in dominant strategies
 - how to encourage cooperate behavior despite hidden actions
 - information asymmetry
 - use contracts
 - how to deliver the payment
 - e.g. the deliverer also receives some part of the payment

Mechanism Design

- Define rules of the games
 - such that rational behavior is good behavior
 - e.g. auction system: second best wins
- Inverse game theory
 - how to design the rules such that the desired outcome occurs
 - provide incentives
- Obedient center
 - the rule system must be enforced on all the nodes
 - altruistic rule maker
 - central control or distributed software control mechanism or cryptography
- Mechanism design can be computationally hard
 - calculating the optimal strategy can be difficult
 - not all the information may be available to each player
 - finding the best rule system poses an even more difficult problem
- Algorithmic Mechanism Design
 - Mechanism is carried out via a distributed computation

Reciprocity based Schemes

- Reciprocity based schemes
 - Users maintain histories of past behavior of other users
 - used for decision making
- Direct-reprocity scheme
 - A decides how to serve user
 B based solely on the service
 that B has provided
 - e.g. Bittorrent
 - still possibilities for manipulation
- Indirect-reciprocity scheme
 - aka. reputation based schemes

- more scalable for
 - large population sizes
 - highly dynamic memberships
 - infrequent repeat transactions
- Problems
 - How to treat newcomers?
 - whitewashing attacks
 - irreplacable pseudonyms
 - penalty for newcomers
 - Indirect reciprocity is vulnerable to deceits, false accusations & false praises
 - sybil attacks
 - sybilproofness

Reciprocative Decision Functions

Discriminating Server Selection

use history records to choose partners

Shared history

- communicate the history with other peers
 - problem: false praise or false accusations

Subjective reputation

- e.g. max-flow algorithm that collects the reputation be the combination of history of other users
- e.g. page-rank algorithm

Adaptive stranger policy

- treat strangers like the previously seen strangers
 - arrest usual suspects only if the crime rate is high

Short-term history

- long history records allow peers to gather reputation and then turn into traitors
- short-term history records will discipline all peers

Future Research Directions

- How to overcome the prisoner's dilemma
 - game theory the right tool?
- What is rational behavior?
 - Is Nash equilibrium the right model
- Influence of different user behavior
 - different grades of selfishness or altruism
- Contracts can lead to desired behavior of peers
 - computational complexity of optimal contracts unknown

Peer-to-Peer Networks 15 Game Theory

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg